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Abstract

Due to recent global discussions about climate change and its possible consequences, the usage
of environmental policy instruments with the intent to counteract against the current environmental
developments has become increasingly important. Environmental regulation as policy instrument
is supposed to reduce or ideally minimize emissions and pollution. However, the question arises
how effective such regulations really are. Further on it is not obvious whether they rather repress
innovation and economic growth than induce a shift towards a greener technology. To address these
questions we investigate an endogenous growth model in an environmental context, introduced by
M.Rauscher [Green R & D versus End-of-Pipe Emission Abatement: A Model of Directed Technical
Change. Thuenen-Series of Applied Economic Theory, 106, 2009]. There, the author investigates
the impact of environmental standards on capital accumulation and R&D investments in an economy
where both, brown (dirty) as well as green (clean) capital can be used in production. While Rauscher
keeps the problem formulation rather general without assuming specific model functions, our focus
is to apply optimal control theory to a specific scenario of this model.
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1 Introduction

In recent years climate change and the possible consequences that human society might have to deal with,

if further global warming cannot be stopped, have become one of the most important topics in science,

politics and the world wide media. The scientific evidence that many key climate indicators are already

moving beyond the patterns of natural variability defines this dramatic change as a world wide concern.

Hence, the importance of climate mitigation has become undeniable. These indicators, including global

mean surface temperature, global ocean temperature, global average sea level, northern hemisphere snow

cover and Arctic sea ice decline as well as extreme climatic events, additionally come along with the risk

of abrupt or irreversible climatic shifts, which might have devastating consequences for the entire world

population. This underlines how urgent the need of climate actions has become (see Richardson et al.

[2009]).

In the 4th Assessment Report by the International Panel on Climate Change (IPCC [2007]), scien-

tific evidence on global warming, its damages and the importance of climate mitigation as well as the

reduction of anthropogenic greenhouse gas (GHG) emissions are demonstrated extensively. According

to their Synthesis Report, the industry sector, besides the energy supply and transport sectors is one of

the main sources of anthropogenic GHG emissions with a portion of almost 20% (2004). The majority

are CO2 emissions due to the use of fossil fuels, but also the emissions of other gases like PFCs, SF6,

CH4 and N2O due to physical and chemical processes yield an essential fraction. Additionally, one has

to consider the polluting impact of industrial waste and wastewater. Further on, not only the sources

are discussed in IPCC [2007] but also a broad range of mitigation policy measures are suggested, which

especially emphasizes the role of technology policies and the increasing need for more R&D efforts.

In the Mitigation of Climate Change Report, some possible mitigation options for a greener technology

are explained, such as fuel switching, including the use of waste material, advanced energy efficiency,

the use of bioenergy and material recycling and substitution. As far as according policy instruments are

concerned, they consider performance standards, subsidies, tax credits, tradeable permits and voluntary

agreements as the most environmentally effective ones.

Although these environmental policy instruments seem to be promising, the question arises how they

can be utilized in the most effective way and whether strict environmental regulation has a supporting or

repressing impact on innovation and economic growth. To answer these questions we refer to a recent

paper by Rauscher [2009] who already addressed this issue in his paper by constructing a simple dynamic

environmental-economic model which considers capital accumulation, end-of-pipe emission abatement,

R&D investments and knowledge spillovers in an endogenous growth framework. He investigates in a

conveniently tractable way whether tighter environmental standards will induce a shift from end-of-pipe

emission abatement to a process-integrated one and which impact they have on R&D investments and

growth. The model Rauscher employs is kept algebraically simple without specifying concrete func-

tional forms. In this paper we introduce specific functional forms and apply optimal control theory to

solve for the dynamic paths of the environmental-economic system.
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The paper is organized as follows. In the next section we introduce the model, which is solved in

section third applying Pontryagin’s Maximum Principle. Numerical simulations, including a bifurcation

analysis, are presented in the fourth section. Section five concludes and gives an outlook for further

research.

2 The Model

To investigate the effects of environmental standards on economic growth and R&D investments, we

build on the model originally worked out by Rauscher [2009], who considers a competitive market econ-

omy where a continuum of identical firms using identical technologies produce a homogenous GDP

good. In this economy two types of capital are accumulated: first, there is conventional capital, also

called brown capital, which is pollutive and therefore not quite eco-friendly, secondly, non-polluting

green capital can be chosen. Additionally, the government sets environmental standards which the en-

trepreneurs are obligated to meet. The necessary abatement effort as well as the abatement costs depend

on the stringency of these regulations. Consequently, firms adopting cleaner technologies have to spend

less on end-of-pipe abatement. This benefit, however, comes at a cost because the required resources for

green R&D could be invested otherwise profitably in conventional R&D. Instead of assuming different

groups of agents, as frequently done in many other papers approaching this topic, Rauscher [2009] fo-

cuses on one type of agent in the private sector of the economy, who is a capital-owning entrepreneur

doing his/her R&D in-house and who saves and consumes all at the same time. In case of perfect compe-

tition of the markets on which these agents interact, the simple homogenous-representative-agent model

generates the same results as its more elaborated version with heterogeneous agents.

Maximizing his/her own profit, this representative agent has to consider the present value of future

utility, given as ∫
∞

0
e−rt(ln(C(t))+u(ε))dt with C(t)> 0, (1)

where C(t) is the consumption or dividend income, ln(C(t)) describes the utility level that one can get

out of it and r is the discount rate. Further on, ε specifies the environmental quality determined by

the government due to their required standards. It is considered as exogenously given and is an index

between 0 and 1, where ε = 0 denotes the laissez-faire scenario describing an economy without any

environmental regulation and therefore with bad environmental quality. On the other side, the maximal

attainable environmental quality is given at ε = 1, where no pollution exists at all. The private sector’s

utility of environmental quality is denoted as u(ε) and will be set in the following as u(ε) = cεγ with

c > 0 and 0 < γ < 1.

The entrepreneurs use conventional capital K(t) and/or green capital G(t) to produce an output

F(K(t),G(t)) =bK(t)α1G(t)α2

with b > 0, t ∈ [0,∞), 0 < α2 ≤ α1 < 1 and α1 +α2 ≤ 1.
(2)

One of the central assumptions in this model is that the output is used completely for consumption, for

the coverage of opportunity costs due to R&D investments of either type and for end-of-pipe emission
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abatement, which is summarized in the following budget constraint:

F(K(t),G(t))−C(t)−w(RK(t)+RG(t))−χ(ε)K(t) = 0. (3)

Note that as of here, we will often omit the time argument t for the ease of exposition. RK and RG denote

the investments for R&D to generate new capital of types K and G, respectively. The parameter w∈ [0,1]
represents the exogenous opportunity costs. The abatement costs for achieving the binding environment

constraints of the government are proportional to the installed conventional capital K. The costs per unit

capital is given as χ(ε) which is increasing and convex in the stringency of environmental regulation,

i.e. χ ′ > 0,χ ′′ > 0, and will be set for this analysis as χ(ε) = aεβ with a > 0 and β > 1.

Regarding the state dynamics for the two types of capital, we use a Cobb Douglas production function

with decreasing returns to scale:

K̇ = A(K,RK) = dKδ1RK
δ2−φK with δ1 +δ2 < 1, (4)

Ġ = B(G,RG) = eGσ1RG
σ2−ψG with σ1 +σ2 < 1. (5)

The existing capital stock itself has a positive feedback on the accumulation. Assuming that this positive

feedback is weaker than the contribution of new technology due to R&D, the partial elasticity of produc-

tion of the capital stock is supposed to be less than the one of the R&D investments. Hence, δ1 < δ2 and

σ1 < σ2. Additionally, it is more likely that conventional capital is more established in the economy than

green one and therefore accumulation is much easier. To take this imbalance into account, the partial

elasticities of green capital G should at least not be greater than those of conventional capital K, i.e.

σ1 ≤ δ1 and σ2 ≤ δ2. Further on, one has to consider that capital of either type is subject to depreciation

over time due to wear and tear as well as obsolescence. Therefore, also depreciation rates φ and ψ are

included.

Figure 1 shows the interrelations of the described variables to illustrate the dynamics of the model.

Starting from the capital stocks K and G, output F(K,G) is produced. Constraint by the available budget

(3), the decision-maker has to determine the extend of R&D investments that are made for either brown

(RK) or green (RG) capital or possibly both investments. These investments in turn influence the growth

of the capital stocks K and G, respectively. Additionally, also the existing capital stock contributes to the

accumulation .
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Figure 1: Sketch of the dynamics of the model.

Solving equation (3) for consumption C together with (1) leads to an optimal control problem with

RK and RG as control variables and the two available types of capital as states, which is given as

max
RK ,RG

∫
∞

0
e−rt

(
ln
(

bKα1Gα2−w(RK +RG)−aε
β K
)
+ cε

γ

)
dt (6)

s.t.: K̇ = dKδ1Rδ2
K −φK (6a)

Ġ = eGσ1Rσ2
G −ψG (6b)

0≤ RK ∀t ≥ 0 (6c)

0≤ RG ∀t ≥ 0 (6d)

0 < bKα1Gα2−w(RK +RG)−aε
β K (6e)

0≤ ε ≤ 1 (6f)

0 < α1,α2,γ,w < 1 and α1 +α2 ≤ 1 (6g)

0 < δ1,δ2 < 1 and δ1 +δ2 < 1 (6h)

0 < σ1,σ2 < 1 and σ1 +σ2 < 1 (6i)

1 < β (6j)

0 < φ ,ψ,a,b,c,d,e,r. (6k)
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3 Analytical results

3.1 Derivation of the Canonical System

Summing up, we consider a discounted autonomous model with infinite planning horizon. To derive

the necessary conditions for an optimal solution we consider the Lagrangian L in current value notation,

whereH denotes the Hamiltonian, C the control and mixed path constraints and µ the vector of Lagrange

Multipliers:

L=H+µC = λ0(ln(F(K,G)−w(RK +RG)−χ(ε)K)+u(ε))+

λ1A(K,RK)+λ2B(G,RG)+µ1RK +µ2RG +

µ3(F(K,G)−w(RK +RG)−χ(ε)K)

with the co-states (λ0,λ1,λ2) 6= 0. Then the first order conditions are

LRK =
−wλ0

F(K,G)−w(RK +RG)−χ(ε)K
+λ1ARK +µ1−wµ3 = 0 (7)

LRG =
−wλ0

F(K,G)−w(RK +RG)−χ(ε)K
+λ2BRG +µ2−wµ3 = 0 (8)

λ̇1 = λ1(r−AK)−λ0
FK(K,G)−χ(ε)

F(K,G)−w(RK +RG)−χ(ε)K
− (9)

µ3(FK(K,G)−χ(ε))

λ̇2 = λ2(r−BG)−λ0
FG(K,G)

F(K,G)−w(RK +RG)−χ(ε)K
− (10)

µ3FG(K,G)

where subscripts denote partial derivatives of multivariate functions. The complementary slackness con-

ditions are

µ1 ≥ 0 and 0 = µ1RK (11)

µ2 ≥ 0 and 0 = µ2RG

µ3 ≥ 0 and 0 = µ3(F(K,G)−w(RK +RG)−χ(ε)K).

One can show that λ0 = 1, without loss of generality. For the derivation of the canonical system one has

to distinguish between the different cases of an interior arc and a boundary arc. In the first case none

of the constraints are active and, due to the complementary slackness conditions in 11, (µ1,µ2,µ3) = 0.

Hence, an optimal control should maximize the current value Hamiltonian, i.e.

(RK
∗,RG

∗) = arg max
(RK ,RG)

H

and therefore

LRK =HRK = 0 (12)

LRG =HRG = 0 . (13)
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To prove that the Hamiltonian is strict concave, the positivity of the co-states is necessary which can

be shown by solving (12) and (13) for λ1 and λ2 respectively. This yields

λ1 =
w

(F(K,G)−w(RK +RG)−aεβ K)ARK (K,RK)
> 0

λ2 =
w

(F(K,G)−w(RK +RG)−aεβ K)BRG(G,RG)
> 0.

Note that ARKRK (K,RK)< 0 and BRGRG(G,RG)< 0. The Hessian matrix of the Hamiltonian

H =


− w2

(F(K,G)−w(RK+RG)−χ(ε)K)2 +λ1ARKRK (K,RK) − w2

(F(K,G)−w(RK+RG)−χ(ε)K)2

− w2

(F(K,G)−w(RK+RG)−χ(ε)K)2 − w2

(F(K,G)−w(RK+RG)−χ(ε)K)2 +λ2BRGRG(G,RG)


therefore is negative definite and the HamiltonianH is strict concave.

The optimality conditions in (12) and (13) allow to derive control functions depending on co-state and

state variables (cf. conditions (7) and (8))

RK = RK(K,G,λ1,λ2) (14)

RG = RG(K,G,λ1,λ2).

Substituting these control functions into the state dynamics (4) and (5) as well as into the adjoint equa-

tions (9) and (10) the canonical system in the state-co-state-space is given as

K̇ = A(K,RK(K,G,λ1,λ2))

Ġ = B(G,RG(K,G,λ1,λ2))

λ̇1 = λ1(r−AK)−
FK(K,G)−χ(ε)

F(K,G)−w(RK(K,G,λ1,λ2)+RG(K,G,λ1,λ2))−χ(ε)K

λ̇2 = λ2(r−BG)−
FG(K,G)

F(K,G)−w(RK(K,G,λ1,λ2)+RG(K,G,λ1,λ2))−χ(ε)K
.

However, from an application orientated point of view it is often more convenient to transform the

canonical system from the state-co-state-space into the state-control-space. Within this representation

immediate interpretation of the results is more convenient (see Grass, Caulkins, Feichtinger, Tragler, and

Behrens [2008]). Additionally, inserting the model functions from above, the two controls from (7) and

(8) are given only implicitly. Therefore, the derivation of the canonical system in the state-control space

is even necessary.

Considering the model functions from above, the first order conditions are

HRK =− w
bKα1Gα2−w(RK +RG)−aεβ K

+λ1(dKδ1δ2RK
δ2−1) = 0 (15a)

HRG =− w
bKα1Gα2−w(RK +RG)−aεβ K

+λ2(eGσ1σ2RG
σ2−1) = 0 (15b)

λ̇1 = λ1(r−dδ1Kδ1−1RK
δ2 +φ)− α1bKα1−1Gα2−aεβ

bKα1Gα2−w(RK +RG)−aεβ K
(15c)

λ̇2 = λ2(r− eσ1Gσ1−1RG
σ2 +ψ)− α2bKα1Gα2−1

bKα1Gα2−w(RK +RG)−aεβ K
. (15d)
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Solving 15a and 15b for λ1 and λ2 instead of the controls yields

λ1(K,G,RK ,RG) =
w

(bKα1Gα2−w(RK +RG)−aεβ K)dKδ1δ2RK
δ2−1 (16)

λ2(K,G,RK ,RG) =
w

(bKα1Gα2−w(RK +RG)−aεβ K)eGσ1σ2RG
σ2−1 .

By using the total time derivatives of the co-states

λ̇1 = λ1K K̇ +λ1GĠ+λ1RK
ṘK +λ1RG

ṘG (17)

λ̇2 = λ2K K̇ +λ2GĠ+λ2RK
ṘK +λ2RG

ṘG

two equations for the control dynamics can be obtained. Together with the adjoint dynamics in (15c) and

(15c) these control dynamics are given as

ṘK = −
λ̇2λ1RG

− λ̇1λ2RG
+ Ġ(λ1Gλ2RG

−λ1RG
λ2G)+ K̇(λ1K λ2RG

−λ1RG
λ2K )

λ1RK
λ2RG
−λ1RG

λ2RK

(18)

ṘG = −
λ̇1λ2RK

− λ̇2λ1RK
+ Ġ(λ1RK

λ2G−λ1Gλ2RK
)+ K̇(λ1RK

λ2K −λ1K λ2RK
)

λ1RK
λ2RG
−λ1RG

λ2RK

which yields the canonical system

ṘK =
D1

2D2
2RG

2RK
2Y 3

w2
(
d(δ2−1)δ2Kδ1RK

δ2
(
D2RG

2w− eY (σ2−1)σ2Gσ1RG
σ2
)
+D1eRK

2w(σ2−1)σ2Gσ1RG
σ2
)

.

{[(
eY (σ2−1)σ2Gσ1RG

σ2−2−D2w
)(

D1(aε
β −bα1Gα2Kα1−1)+w

(
−dδ1Kδ1−1RK

δ2 + r+φ

))
+

D2w
(
w
(
−eσ1Gσ1−1RG

σ2 + r+ψ
)
−bD2α2Gα2−1Kα2

)] w
D1D2

2Y 3
+ ĠT1 + K̇T2

}

ṘG =
D1

2D2
2RG

2RK
2Y 3

w2
(
d(δ2−1)δ2Kδ1RK

δ2
(
D2RG

2w− eY (σ2−1)σ2Gσ1RG
σ2
)
+D1eRK

2w(σ2−1)σ2Gσ1RG
σ2
)

.

{[(
dY (δ2−1)δ2Kδ1RK

δ2−2−D1w
)(

w
(
−eσ1Gσ1−1RG

σ2 + r+ψ
)
−bD2α2Gα2−1Kα2

)
+

D1w
(

aD1ε
β −bD1α1Gα2Kα1−1−dwδ1Kδ1−1RK

δ2 +w(r+φ)
)] w

D1D2
2Y 3

+ ĠT3 + K̇T4

}

K̇ = dKδ1RK
δ2 −φK

Ġ = eGσ1RG
σ2 −ψG (19)

with

T1 =
ew2σ2Gσ1−1RG

σ2−2 (bα2(σ2−1)Gα2Kα1 +RGwσ1)

D1D2
2Y 3

T2 = − w2

D1
2D2

2KRG
2RKY 3

(
dδ1δ2Kδ1RK

δ2
(
D2RG

2w− eY (σ2−1)σ2Gσ1RG
σ2
)
−

D1eRK(σ2−1)σ2Gσ1RG
σ2
(
bα1Gα2Kα1−aKε

β
))
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T3 =
w2

D1
2D2

2GRGRK
2Y 3

(
d(δ2−1)δ2Kδ1RK

δ2 (bD2RGα2Gα2Kα1 + eY σ1σ2Gσ1RG
σ2)−

D1eRK
2wσ1σ2Gσ1RG

σ2
)

T4 =
dw2δ2Kδ1−1RK

δ2−2
(
(δ2−1)

(
bα1Gα2Kα1−aKεβ

)
+RKwδ1

)
D1

2D2Y 3

Y = bKα1Gα2−w(RK +RG)−aε
β K

and D1 and D2 being the first derivatives of the state dynamics with respect to the corresponding control

D1 = dKδ1δ2RK
δ2−1

D2 = eGσ1σ2RG
σ2−1.

In the boundary arc case, the optimal controls do not necessarily maximize the Hamiltonian, i.e.

HRK = 0 andHRG = 0 might not be fulfilled in the optimum. Hence, the approach to derive the canonical

system in the state-control-space, as done in (15a)-(19), cannot be used. Instead, the optimal controls

have to maximize the Lagrangian. Therefore, in case of one or even both control constraints being

active, the partial derivatives of the Lagrange function with respect to the controls, LRK = 0 and LRG = 0,

together with the active constraint equations yield the corresponding Lagrange multipliers and the control

dynamics, while the adjoint equations can be used to calculate the co-states. The state dynamics remain

the same just with the according control values inserted, meaning RK = 0 and/or RG = 0. If, however,

the mixed path constraint is fulfilled, the derivation of the according canonical system is more extensive.

Assuming that the mixed path constraint is the only constraint being active, meaning that RK and RG are

positive, the following DAEs have to be solved

K̇ = A(K,G,RK ,RG)

Ġ = B(K,G,RK ,RG)

λ̇1 = λ1(r−AK)−
FK(K,G)−χ(ε)

F(K,G)−w(RK +RG)−χ(ε)K
−µ3(FK(K,G)−χ(ε))

λ̇2 = λ2(r−BG)−
FG(K,G)

F(K,G)−w(RK +RG)−χ(ε)K
−µ3FG(K,G)

LRK = HRK +µ3CRK = 0

LRG = HRG +µ3CRG = 0

0 = C(K,G,RK ,RG)

where C defines the mixed path constraint and this time µ3 ≥ 0. In order to transform these DAEs into
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ordinary differential equations (ODEs), total time derivatives have to be considered:

d
dt
LRK = (HRKK +µ3CRKK)K̇ +(HRKG +µ3CRKG)Ġ+(HRKRK +µ3CRKRK )ṘK +

(HRKRG +µ3CRKRG)ṘG + λ̇1HRKλ1 + λ̇2HRKλ2 + µ̇3CRK = 0
d
dt
LRG = (HRGK +µ3CRGK)K̇ +(HRGG +µ3CRGG)Ġ+(HRGRK +µ3CRGRK )ṘK +

(HRGRG +µ3CRGRG)ṘG + λ̇1HRGλ1 + λ̇2HRGλ2 + µ̇3CRG = 0
d
dt

C = CKK̇ +CGĠ+CRK ṘK +CRGṘG = 0. (20)

Inserting the according equations for K̇,Ġ,λ̇1 and λ̇2 and solving the previous equations for ṘK ,ṘG and µ̇3

yields the equations for the controls. Note, however, that λ̇1 and λ̇2 include λ1 and λ2 respectively, and

therefore also ṘK , ṘG are both dependent on the co-state. For this reason the reduction of the canonical

system to four dimensions is not possible anymore and one has to consider all six dimensions which then

are given as

K̇ = A(K,G,RK ,RG) (21)

Ġ = B(K,G,RK ,RG)

λ̇1 = rλ1−TK−λ1AK−
TRK +λ1ARK

w
(FK−χ(ε))

λ̇2 = rλ2−TG−λ2BG−
TRG +λ2BRG

w
FG

ṘK = Y (K,G,RK ,RG,λ1,λ2)

ṘG = V (K,G,RK ,RG,λ1,λ2)

where T denotes the target function

T = ln(F(K,G)−w(RK +RG)−χ(ε)K)+u(ε)

and Y and V denote the obtained results for the control dynamics, which we omit here because they are

very complex and don’t allow any immediate insights.

3.2 Steady States

According to the maximum principle (see Grass et al. [2008]), in the following the maximization prob-

lem (6) subject to (6a)-(6k) will be solved by determining the stable manifolds arising from the canonical

system which has been derived in the previous section. The steady states of the canonical system are de-

termined by solving K̇ = 0, Ġ = 0, ṘK = 0, ṘG = 0 simultaneously. Considering the two state dynamics,
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the according roots are obvious immediately:

KK̇ =

(
φ

dRK
δ2

) 1
δ1−1

(22)

RKK̇
=

(
φ

dKδ1−1

) 1
δ2

GĠ =

(
ψ

eRG
σ2

) 1
σ1−1

RGĠ
=

(
ψ

eGσ1−1

) 1
σ2

where subscripts denote the equation which is set to zero, respectively. Further on, also K = 0 and G = 0

would obviously be solutions. However, K and G occur in the denominator of ṘK and ṘG multiplicatively.

Hence, for K = G = 0 we find no feasible steady state solution of the canonical system. Anyway, since

the intention of environmental policy is not to let complete shut down of production be the only way to

cope with introduced environmental standards, the main focus of this thesis lies on the determination of

steady states with a positive production output. Inserting the roots in (22) together with parameter values

into ṘK and ṘG, the intersection of the isoclines ṘK = 0 and ṘG = 0 determines the steady states. In this

first approach only one steady state can be detected, which will be demonstrated in what follows.

3.3 Stability

To determine the stability of this steady state, the Jacobian matrix is used, which is given by

J =


K̇K 0 K̇RK 0

0 ĠG 0 ĠRG

ṘKK ṘKG ṘKRK
ṘKRG

ṘGK ṘGG ṘGRK
ṘGRG

 , (23)

where subscripts denote partial derivatives again. Hence the characteristic polynomial is

P(µ) =
(

K̇RK ṘKK − (K̇K−µ)(ṘKRK
−µ)

)(
ĠRGṘGG− (ĠG−µ)(ṘGRG

−µ)
)
, (24)

which determines four eigenvalues

µ1,2 =
K̇K + ṘKRK

2
±

√
(K̇K− ṘKRK

)2

4
+ K̇RK ṘKK︸ ︷︷ ︸

X1

(25)

µ3,4 =
ĠG + ṘGRG

2
±

√
(ĠG− ṘGRG

)2

4
+ ĠRGṘGG︸ ︷︷ ︸

X2

.

Considering the sign of the determinant

detJ = (K̇RK ṘKK − K̇KṘKRK
)︸ ︷︷ ︸

:=Z1

(ĠRGṘGG− ĠGṘGRG
)︸ ︷︷ ︸

:=Z2

,

the cases summarized in Table 1 can be distinguished.
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det(J) Discriminant Eigenvalues (EV) Signs of real part of EV Behavior

Z1,Z2 > 0 X1,X2 > 0
real with

( +,-,+,- ) Saddle pointopposite signs
>0

X1,X2 > 0 real with same signs ( -,-,+,+ ) Saddle point
Z1,Z2 < 0 X1,X2 < 0 complex ( -,-,-,- ) Stable

sgn(X1) 6= sgn(X2) real and complex (+,+,+,+) Repelling

Z1 > 0,Z2 < 0
X1,X2 > 0 real

(+,+,+,-)
X1 < 0,X2 > 0 real and complex

<0

Z1 < 0,Z2 > 0
X1,X2 > 0 real

( -,-,-,+ )

Unstable

X1 > 0,X2 < 0 real and complex

Table 1: Possible cases of stability.

3.4 The Laissez-Faire Scenario and the Introduction of Environmental Policy

At first, an economy is considered in which no environmental standards at all are imposed, i.e. ε =

0. In this laissez-faire scenario, the agent does not have to fulfill any environmental restrictions and

therefore is completely free of abatement costs. However, this comes at the expense of environmental

quality and consequently of the utility it yields. Anyway, as long as the utility of consumption is high

enough to compensate for the loss of environmental quality, the agent’s capital accumulation is somehow

conceivable. Due to the fact that green capital is less productive than brown capital it is obvious that the

agent will mainly use the polluting capital as much as possible. However, complete abandonment of

green capital is not possible due to the assumption of a Cobb Douglas production function, but the green

input factor is expected to be at least comparatively low. Figure 2 shows that the single steady state is

at K = 29,160, G = 4,126 with control levels RK = 4,453 and RG = 1,187, which is a saddle point

according to the first case in Table 1. Obviously K is dominant in production. The colored region in

Figure 2 corresponds to the admissible region according to the mixed path constraint C ≥ 0.

In the next step, an economy with a medium environmental quality standard ε = 0.4 is considered. As

one can see in Figure 3, this causes a big change in the position of the steady state. In this scenario, the

saddle point is at K = 714, G = 981, RK = 24 and RG = 96. Due to the higher abatement cost, brown

capital as dominant input factor has become too expensive. Green capital now is an essential substitute,

despite its lower productivity. Comparing Figure 3 with Figure 2 one can see that the admissible region

C ≥ 0 shrinks with increasing ε .

Figure 4 finally shows the steady state for the basic model with constant returns to scale (CRS) in the

production function, which is at K = 904,808, G = 104,374, RK = 545,908 and RG = 333,154. One

can see that these equilibrium values are quite high, compared to the previous two scenarios. Also the

admissible region expands with constant returns instead of decreasing returns to scale.
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dRK�dt=0

dRG�dt=0

C>0
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Figure 2: Steady state in the laissez-faire scencario for α1 = 0.6 and α2 = 0.2.

dRK�dt=0

dRG�dt=0
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Figure 3: Steady state for α1 = 0.6,α2 = 0.2 and ε = 0.4.
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dRK�dt=0

dRG�dt=0
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Figure 4: Steady state for CRS with α1 = 0.7,α2 = 0.3 and ε = 0.4.

4 Optimal Paths

In this section, the matter of interest is to find trajectories converging towards the equilibrium and to get

the corresponding projections that cover a significant part of the (K,G)-plane. For this purpose, the initial

value problem approach is used. Hence, initial values for a backward solution of the four-dimensional

canonical system need to be constructed first. However, note that only the stable manifold leads directly

into the equilibrium. Consequently, this set of starting points has to be very close to the equilibrium,

in order to stay on or at least close to the stable manifold. Additionally, also dominant directions in

the convergence to the steady state have to be considered. Therefore, an appropriate ellipse around the

equilibrium is generated from which these starting points are taken. To take the dominant directions into

account, the eigenvectors with negative eigenvalues are used for the calculation which is done by the

formula

S = E +
e1

|e1|
cos(η)+

e2

|e2|
sin(η) with η ∈ [0,2π], (26)

where S is the calculated starting point, E denotes the equilibrium, and e1 and e2 are the correspond-

ing eigenvectors. Within this calculation the values of the angle η are close to π

2 and 3π

2 . This comes

along with the fact that in those cases cos(η) is close to zero and therefore the dominant directions

are weighted less here (cf. Knoll and Zuba [2004]). Based on these constructed initial values the

canonical system is solved backwards. The projection of the resulting four-dimensional optimal tra-

jectories onto the (K,G)-plane leads to a phase portrait, from which those trajectories have to be chosen,

which correspond to the given initial conditions. In Figure 5 the phase portrait for ε = 0.4 is depicted.

Here, the crucial and obviously very narrow intervals for the angle η are [0.4999755π,0.4999756π] and

[1.500024418π,1.500024419π].

As one can see in in Figure 5, some of the trajectories are divided into two parts. The first part, which is

common for all and depicted in gray, corresponds to the backward solution of the system starting from
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the equilibrium. On the left hand side the trajectories are continued until K = 0. On the right hand side,

however, continuation aborts when the trajectories reach the boundary of the admissible region subject

to the control constraint in (6c) where RK = 0. This constraint is depicted in the figure as dashed black

line. To enable further continuation of these trajectory paths, RK is constantly set to zero and calculation

continues with the according canonical system where ṘK = 0. These second parts of the trajectories are

depicted in black and their continuation is possible until they finally reach the admissible boundary of

the mixed path constraint in (6e), where consumption, and therefore also utility from consumption, is

zero.

C£0

0 2000 4000 6000 8000 10 000 12 000
K0

2000

4000

6000

8000

10 000

12 000

14 000

G

Figure 5: Phase portrait in (K,G)-space for α1 = 0.6,α2 = 0.2 and ε = 0.4.

4.1 Initial Points with an Equal Level of K and G

Figure 6 shows two trajectories from the phase portrait in the (K,G)-plane which both have initial points

with almost equal levels of K and G. The first one starts at very low levels of brown and green capital

which are smaller than the equilibrium values. Along the path to the equilibrium the levels of both types
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of capital increase. The second trajectory has its initial point at a high level of brown and green capital

above the equilibrium values. Accordingly, the levels of capital decrease along the trajectory while ap-

proaching the equilibrium.

dRK�dt=0

dRG�dt=0

0 2000 4000 6000 8000 10 000 12 000
K0

2000

4000

6000

8000

10 000

12 000

G

Figure 6: Two trajectories for α1 = 0.6,α2 = 0.2 and ε = 0.4 with equal initial capital levels.

Figure 7 shows the optimal time paths in K, G, RK and RG along the trajectory starting at the lower

level of capital. As one can see, the levels of both types of capital increase monotonously while con-

verging towards their equilibrium values, where conventional capital in the beginning is a little bit higher

than green capital. Nevertheless, green capital finally gets dominant. Considering the paths of the R&D

investments, the levels of RK and RG increase very quickly initially. Therefore less time is needed to

get close to their equilibrium values. In order to cause growth in the capital levels, initially high R&D

investments are needed until the positive feedback of the capital stock on itself is effective enough to

thwart the negative pressure of depreciation. Note that the level of RK even decreases after reaching

a peak to slow down this positive feedback until growth and depreciation are perfectly balanced close

to the equilibrium. Due to the fact that the production elasticity of RG is less than the one of RK , the

behavior is different here. Higher investments are necessary to achieve the same effects and the RG level

monotonously increases towards the equilibrium value.

In Figure 8 the same paths are considered for the trajectory starting at the high capital level. Here the

levels of both capitals are decreasing. Due to the almost equal initial level of K and G and the compar-

atively lower equilibrium level of K, the decline of K is stronger than in green capital. To switch off

the positive feedback of K on its own stock completely, and therefore to boost the negative impact of

depreciation, RK initially is even zero and only rises again to stop this decline, but stays at a very low

level, though. Due to lower production elasticity the level of green R&D initially rises very quickly up

to a peak to stop the negative pressure of depreciation. Then it slightly decreases again to finally remain
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Figure 7: Optimal time paths of state and control starting from low capital levels

for α1 = 0.6,α2 = 0.2 and ε = 0.4.

at a level obviously higher than the one of RK .
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Figure 8: Optimal time paths of state and control starting from high capital levels

for α1 = 0.6,α2 = 0.2 and ε = 0.4.

4.2 Initial Points with One Type of Capital Being Dominant

As mentioned above the initial use of both capital types is assumed due to the use of a Cobb Douglas

production function. However, situations in which one type of capital is definitely the dominant input

factor, whereas the other one almost equals zero, are certainly a matter of interest. Figure 9 shows two

trajectories for such initial conditions. One either starts at a green capital-dominated production or in

an initial point where K is used almost exclusively as production input. In both cases, the level of the

dominant capital lies above the equilibrium values, while the level of the dominated capital is below its

equilibrium level.

Figure 10 shows the optimal time paths in the case of an initially green capital-dominated production. In

contrast to the previous case of an almost balanced initial mix of production, the behavior of the capital

levels in this dominated scenario are respectively opposed. Because green capital is dominant here, the

level of G decreases while brown capital, starting at a very low level, rises up to the equilibrium value.

Considering the R&D investments, the same behavior as in Figure 7 can be observed, where RK rises

up to a peak, then falls again and slows down the positive feedback, while RG increases monotonously.
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dRK�dt=0

dRG�dt=0
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Figure 9: Two trajectories starting at a one-capital-type-dominated production for α1 = 0.6,α2 = 0.2 and

ε = 0.4.

Summarizing this scenario it is interesting to see that RG is increasing while G is decreasing. In other

words, green R&D investments are made so to keep G at a sufficiently high level.
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Figure 10: Optimal time paths of state and control starting from a definitely green capital-dominated

production for α1 = 0.6,α2 = 0.2 and ε = 0.4.

Regarding the case of an initially brown capital-dominated production, the according optimal time paths

are depicted in Figure 11. Accordingly, in this case K decreases and G rises up to the equilibrium values.

Again, RK is initially zero and rises up to slow down the decline, while RG rises up to a peak and then

slightly decreases.
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Figure 11: Optimal time paths of state and control starting from a definitely brown capital-dominated

production for α1 = 0.6,α2 = 0.2 and ε = 0.4.

4.3 Bifurcation Analysis

In the previous sections, equilibria for specific values of ε were considered. However, the main focus

of this thesis is the investigation of the influence of the required environmental standards on the capital

accumulation and hence on the production. In order to do this, bifurcation analysis is used with ε being

the varied parameter. Although only one steady state has been detected so far, and hence the bifurcation

diagram for the basic model is quite simple, it gives a first idea about the interrelation of the environmen-

tal quality and the usage of both types of capital as input in production.

Figure 12 depicts the change of the equilibrium values under the variation of the environmental qual-

ity imposed by the government. For ε = 0 (laissez-faire scenario) K is clearly dominant in production as

already mentioned above. As one can see, increasing ε results in an immediate decrease of K due to the

rising abatement cost per unit of brown capital. Also G decreases with growing environmental quality.

This might seem a little bit astonishing at first sight, but comes along with the fact that, due to the Cobb

Douglas production function, a complete abandonment of K as production input is impossible, and there-

fore a sufficiently small level of K has to be used which at the same time has an increasingly absorbing

impact on the productivity of G. However, this decrease is much smaller than the one of K. The point of

special interest is at ε = 0.362. At this point, abatement gets so expensive that the use of green capital

as dominant production input is more advantageous. In Figure 13 the changes of the equilibrium values

of RK and RG over ε are shown. They behave quite similarly. Initially, RK is dominant until abatement

gets too expensive and higher investments in green R&D are optimal. This change happens already at

ε = 0.263, i.e. earlier than for the capital stocks.

Note, however, that in this basic model increasing environmental standards in general have a diminish-

ing impact on the production inputs, and therefore on production output, and furthermore on economic

growth. As one can see in Figure 14, the production is strictly monotonously decreasing.

In contrast, the utility function as depicted in Figure 15 rises up to a peak before it decreases due to the

trade-off between consumption and environmental quality. If ε is small enough, a small loss in consump-

tion in return for a slightly better environment is advantageous. The utility-maximizing environmental

quality is at ε = 0.125.
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Figure 12: Bifurcation diagram for steady state levels of K and G with respect to ε for α1 = 0.6, α2 = 0.2.
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Figure 13: Bifurcation diagram for steady state levels of RK and RG with respect to ε for α1 = 0.6,

α2 = 0.2.

19



0.2 0.4 0.6 0.8 1.0
Ε

500

1000

1500

2000

2500

Production

Figure 14: Bifurcation diagram of the steady state production output with respect to ε for α1 = 0.6,

α2 = 0.2.
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Figure 15: Bifurcation diagram of equilibrium utility with respect to ε for α1 = 0.6, α2 = 0.2.
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In order to get a more qualitative than a quantitative comparison of the changing usage of K and G

with increasing ε , the ratios of both are shown in Figure 16. As one can see, the ratio of G follows a

convex-concave shape. At the beginning, the usage of G is quite low and does not change much with

increasing ε . In this area, the abatement costs are still too low to change the advantage of conventional

capital. The inflexion point is at ε = 0.362 where green capital starts to dominate conventional capital.

From here on the ratio of G grows quite quickly until it converges to almost 100%. Note however, that

100% can never be reached. Accordingly, the ratio of K follows a concave-convex decrease.
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Figure 16: Bifurcation diagram of the equilibrium ratios of K and G with respect to ε for α1 = 0.6,

α2 = 0.2.

In Figure 17 the ratios of the according R&D investments are depicted. Their development is similar, the

only difference is the position of the inflexion point which is already at ε = 0.263.
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Figure 17: Bifurcation diagram of the equilibrium ratios of RK and RG with respect to ε for α1 = 0.6,

α2 = 0.2.
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5 Conclusion

The aim of this work is to investigate how environmental regulation influences economic growth as well

as R&D investments and whether or not they induce a shift to a greener technology.

As far as economic growth is concerned, it becomes obvious that increasing stringency of environ-

mental regulation causes a decline in both types of capital and consequently also in production output.

Therefore it rather represses than supports economic growth.

However, the carried out analysis shows, that increasing environmental regulation indeed has a posi-

tive impact on the accumulation of green capital and on the increase of green R&D investments. This can

especially be seen when the shares of capital levels and R&D investments under varying stringency of

environmental standards are considered. Although both capital levels decline, increasing abatement costs

even accelerate the decrease of brown capital levels so that in total production turns out to be greener the

higher environmental quality standards are. Same applies for R&D investments.

To sum up, environmental regulation standards can cause a shift to greener production but only at the

cost of repressed economic growth. Therefore, the introduction of additional environmental instruments,

such as taxes or maybe subsidies, might be interesting and could possibly be helpful to archive better

results. Moreover, also the usage of a pollution function describing the environmental condition will be

matter of future work.
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Appendix

Parameter Value Description

a 1 Constant of proportionality of abatement costs

b 1 Scale parameter of the production function

c 5 Scale parameter describing the utility of environmental quality

d 1 Scale parameter of K̇

e 1 Scale parameter of Ġ

r 0.05 Discount rate

w 0.1 Opportunity cost of research

β 2 Exponent of abatement costs

γ 0.4 Exponent describing the utility of environmental quality

δ1 0.3 Production elasticity of K in K̇

δ2 0.5 Production elasticity of RK in K̇

σ1 0.3 Production elasticity of G in Ġ

σ2 0.4 Production elasticity of RG in Ġ

φ 0.05 Depreciation rate of K̇

ψ 0.05 Depreciation rate of Ġ

Table 2: Parameter values.
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