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Abstract 

In this paper, a dynamic optimization model of investment in improvement of the 

resource productivity index is analyzed for obtaining balanced economic growth trends 

including both the consumption index and natural resources use. The research is closely 

connected with the problem of shortages of natural resources stocks, the security of 

supply of energy and materials, and the environmental effectiveness of their consumption. 

The main idea of the model is to introduce an integrated environment for elaboration of a 

control policy for management of the investment process in development of basic 

production factors such as capital, energy and material consumption. An essential feature 

of the model is providing the possibility to invest in economy’s dematerialization. 

Another important construction is connected with the price formation mechanism which 

presumes the rapid growth of prices on exhausting materials. The balance is formed in 

the consumption index which negatively depends on growing prices on materials. The 

optimal control problem for the investment process is posed and solved within the 

Pontryagin maximum principle. Specifically, the growth and decline trends of the 

Hamiltonian trajectories are examined for the optimal solution. It is proved that for 

specific range of the model parameters there exists the unique steady state of the 

Hamiltonian system. The steady state can be interpreted as the optimal steady trajectory 

along which investments in improving resource productivity provide raising resource 

efficiency and balancing this trend with growth of the consumption index. The 

comparison analysis is implemented for optimal model trends and historical trends of real 
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econometric data. As a result of system analysis and modeling, one can elaborate 

investment strategies in economy’s dematerialization, resource and environmental 

management for improving the resource productivity index and, consequently, for 

shifting the economic system from nonoptimal paths to the trajectory of sustainable 

development.  

 

Introduction  

The paper is devoted to the problem of optimizing trends in resources productivity 

and balancing investment in economy’s dematerialization with sustainable growth of the 

consumption index. The problem is considered within the classical approach [Solow, 

1970], [Schell, 1969] of construction of economic growth models. The main new element 

in the proposed model is a price formation mechanism which reflects possibility of rapid 

growth of prices on exhausting resources. Growing prices negatively influence on the 

consumption index which should be maximized in the model as the basic element of the 

utility function. 

Let us note that the stated problem has in its background very important concerns 

of the modern society with respect to the current world resource utilization. The recent 

statistics [IPCC Report, 2007] [OECD Report, 2008] shows rapid increase of natural 

resource consumption, especially, in the following components: fossil energy (oil, natural 

gas, oil), ferrous metals (iron ore, etc.), nonferrous metals (bauxite, etc.), non-

metalliferous minerals (lime), biomass (wood, etc.). Taking into account the limitations 

of natural resources, at least, of its assured part, the problem of raising resource 

efficiency and even reducing resource consumption becomes extremely significant. 

Nowadays, a comprehensive research is being implemented on material flow analysis 

(MFA) by international (EUROSTAT, IPCC, OECD, World Resources Institute) and 

national (Germany, the Netherlands, the United States, Japan, China) research and policy 

making organizations. Material flow analysis is a systematic assessment of the flows and 

stocks of materials within a system defined in space and time. It connects the sources, the 

pathways, and the intermediate and the final sinks of a material. The method is an 

attractive decision-support tool in resource management, waste management, and 

environmental management. 
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In this paper, we supplement this research and develop the model of dynamic 

optimization of investment process in improving resource productivity within the 

economic growth theory [Arrow, 1985], [Ayres, Warr, 2009], [Barro, Sala-i-Martin, 

1995], [Crespo-Cuaresma, Palokangas, Tarasyev, 2011], [Gordon, Koopmans, Nordhaus, 

Skinner, 1988], [Grossman, Helpman, 1991]. Particularly, the construction of the model 

inherits elements of economic growth models introduced in [Ane, Watanabe, Tarasyev, 

2007a, 2007b], [Ayres, Krasovskii, Tarasyev, 2009], [Krasovskii, A.A., Tarasyev, 2009], 

[Krasovskii, Kryazhimskiy, Tarasyev, 2008], [Sanderson, Tarasyev, Usova, 2010], 

[Tarasyev, Watanabe, 2001], [Tarasyev, Watanabe, Zhu, 2002], [Watanabe, Shin, 

Heikkinen, Tarasyev, 2009]. Let us mention here papers [Aseev, Besov, Kaniovski, 

2011], [Feichtinger, Hartl, Kort, Veliov, 2006], [Hutschenreiter, Kaniovski, Kryazhimskii, 

1995] which are devoted to different aspects of economic growth modeling and 

conceptually are close to our approach. The model dynamics includes production, current 

material use and cumulative material consumption as main phase variables. Growing 

trend in production is given exogenously by the exponential term generated by such 

production factors as capital and labor. Material use is introduced as a production factor 

in the production function of the Cobb-Douglas type. The main control variable is 

presented by investment in raising resource productivity in the current period.  

It is assumed that prices on materials due to exhaustion are growing rapidly to 

infinity when the cumulative material consumption is close to the available (assured) 

stock. In the balance equation both growth and decline trends are taken into account: the 

growth trend in the consumption index is stimulated by the production growth and the 

decline trend is caused by raising costs of materials and expenditures directed on 

improvement of resource productivity.  

The problem is to find the optimal proportion of investment in the dynamic 

process with maximization of the utility function given as the integrated consumption 

index over trajectories of the economic system. The model is examined within the 

framework of the Pontryagin maximum principle [Pontryagin, Boltyanskii, Gamkrelidze, 

Mishchenko, 1962] with special characteristics of infinite horizon [Aseev, Kryazhimskiy, 

2007]. Specific features of the corresponding Hamiltonian system are examined within 

the qualitative theory of differential equations [Hartman, 1964]. In our analysis we use 
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constructions of dynamic programming and the theory of generalized solutions of 

Hamilton-Jacobi equations [Bellman, 1957], [Krasovskii, A.N., Krasovskii, N.N., 1995], 

[Subbotin, 1995], [Rockafellar, 2004]. The range of model parameters is indicated for 

existence and uniqueness of a steady state. The steady state plays the role of the optimal 

steady solution and its proportions can be used as an economic standard for the first 

approximation of solution of the optimal control problem. It is shown that at the steady 

state the optimal level of investment in resource productivity provides reduce in resource 

consumption and raise of its efficiency, and establish a reasonable balance between 

investment and consumption. 

We provide the comparison analysis and adjustment of optimal model trajectories 

to historical trends of real econometric data. This analysis shows that the model quite 

adequately catches the main econometric tendencies and reflects the influence of 

investment in improvement of resource productivity on sustainable growth under limited 

resources. The main output of the implemented analysis and modeling is construction of 

investment strategies in economy’s dematerialization and improvement of resource 

productivity. The model simulations demonstrate that the proposed investment strategies 

could shift the economic system from nonoptimal paths to the trajectory of sustainable 

development.  

The Model Description 

 

In this section we introduce the main variables and model parameters and provide 

the basic relations for the model construction. 

 

Model Variables 

We assume that the model dynamics is evolved in time t  on the infinite horizon 

[0, ]t  .  

The main phase variables of the model are presented by the current production, 

the resource use and the cumulative resource consumption.  

The symbol ( )y y t  stands for production in period t . 

The resource use in period t  is denoted by the symbol ( )m m t  with the initial 

condition *(0)m m . 
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The cumulative resource consumption is introduced as the integrated material use  

0

( ) ( )
t

M M t m s ds   .      (1) 

 The initial condition for the cumulative resource consumption is given by the 

relation *(0) 0M M  . 

By the symbol ( )z z t  we denote the resource productivity in period t : 

( )
( )

( )

y t
z t

m t
 .        (2) 

 Sometimes for convenience we use the value of resource intensity inverse to 

productivity  

1 ( )
( )

( ) ( )

m t
Z t

z t y t
  .       (3) 

 Rates of the main variables are introduced in the usual way: 

 the symbol 
( )dy t

dt
 stands for the rate of production in period t ; 

 the symbol 
( )dm t

dt
 is introduced for the rate of the material use; 

 the meaning of the symbol 
( )

( )
dM t

m t
dt

  is the rate the cumulative material 

consumption; 

 by the symbol 
( )dz t

dt
 we denote the rate of the material productivity in period t .  

 

Price Formation Mechanism 

In the definition of the price formation mechanism the basis is provided by the 

concept of raising prices ( )p t  on natural resources in the case of their limitation or 

exhaustion. It is assumed that prices are growing according to the inversely proportional 

rule of resources exhaustion 

0

0

1
( )

( )
1

p p t p
M t
M

 
 
 

 

      (4) 
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 Here the meter , 0,    is the elasticity coefficient of the price formation 

mechanism, the symbol 0M  stands for the limitation of natural resources, and the symbol 

0p  denotes the initial price on natural resources. 

 Balance Equation 

 In the balance equation it is taken into account that production ( )y t  in period t  is 

shared between consumption ( )c t , from the one hand, and the growing cost of natural 

resources ( ) ( )p t m t  plus investment ( )s t  in improving the resource productivity, from 

the other hand,  

( ) ( ) ( ) ( ) ( )y t c t p t m t s t   .      (5) 

 Let us assume that there exists an upper bound 0s  for investment ( )s t  

00 ( ) ( )s t s y t   . 

 Deducing the consumption intensity ( ) / ( )c t y t  from this equation through the 

resource intensity ( ) / ( )m t y t  we obtain the following relation 

( ) ( )
1 ( ) ( )

( ) ( )

c t m t
p t u t

y t y t
   .      (6) 

 Here the symbol ( )u t  stands for the investment intensity  

  
( )

( )
( )

s t
u t

y t
 .         (7) 

 We assume that there exists an upper bound 0u  for the investment intensity ( )u t , 

so 0( )u t u . 

 Production Function 

 The exponential production function of the Cobb-Douglas type is selected for the 

first version of the model  

( ) ( )bty t a e m t .       (8) 

 Here the parameter , 0,a a   is a scale factor; the growth rate , 0,b b   indicates 

the growth process of production ( )y t  due to development of basic production factors 

such as capital, labor, technology, etc.; the symbol , 0,    denotes the elasticity 

coefficient of natural resources. We assume the diminishing return to scale of natural 

resources as a production factor, 0 1.   
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 Consumption 

 Let us obtain formula for the consumption intensity expressed through the 

resources consumption ( ), ( ),m t M t  by substituting relations of the price formation 

mechanism (4) and the production function (8) to relation (6) 

  (1 )0

0

( )
1 ( ) ( )

( ) ( )
1bt

pc t
m t u t

y t M t
a e

M




  
 
 

 

.    (9) 

 

 Model Dynamics 

 Let assume that the relative raise in the resource productivity ( )z t  is proportional 

to the portion of the assigned investment ( )u t  

  
1 ( )

( )
( )

dz t
u t

z t dt
 .       (10) 

 Here the parameter , 0,    describes the effectiveness of investments 

investment ( )u t  in raising the resource productivity. 

 Taking into account the definition (2) of the resource productivity ( )z t  one can 

obtain the following presentation for its rate 

  
1 ( ) ( ) ( )

( ) ( ) ( )

dz t dy t dm t

z t dt y t m t
  .      (11) 

 The last equation means that the rate of the resource productivity can be 

decomposed into two components: the production rate and the rate of the resource 

consumption.  

 Developing this formula further on the basis of the presentation for the production 

function (8) we get the following relation 

  
1 ( ) ( )

(1 )
( ) ( )

dz t dm t
b

z t dt m t
   .       (12) 

 Finally, combining formulas (10) and (12) we derive the equation for the rate of 

the resource consumption 

   ( ) 1
( )

( ) (1 )

dm t
b u t

m t



 


.      (13) 
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 Equation (13) shows that the rate of the resource consumption is influenced by the 

production growth rate b  and can be reduced only by investment ( )u t  in raising the 

resource productivity. Let us note that if investment is equal to zero, ( ) 0u t  , then the 

rate of the resource consumption should be proportional to the production growth rate b . 

 To develop the model dynamics further, let us introduce the following change of 

variables 

  (1 )
1

0

( )
( ) 1

b t
M t

x t e
M


 


   

  
 

,      (14) 

  (1 )
2 ( ) ( )

bt

x t e m t 

  .       (15) 

 

 We derive the differential equations for the model dynamics by differentiating 

variables 1( )x t , 2 ( )x t  in time t  and taking into account equations (1)-(2), (8), (13). We 

obtain the following differential equations which form the basic model dynamics 

  
1

1
1

1 1 2
0

( )
( ) ( ) ( )

(1 )

dx t b
x t x t x t

dt M
 

 

 
 

   
 

,    (16) 

  2
2

( ) 1
( ) ( )

(1 ) (1 )

dx t b
u t x t

dt

 
  

 
      

.    (17) 

 The initial conditions are given by the following relations 

*

1
0 0

(0)
(0) 1 1 1

M M
x

M M

 
   

       
   

,     (18) 

*
2 (0) (0)x m m  .       (19) 

 Relations (18), (19) mean the variable 1( )x t  is an analogue of the cumulative 

resource consumption ( )M t , and the variable 2 ( )x t  is equivalent to the current resource 

use ( )m t . 

 It is important to remind that the control variable ( )u t  in the model dynamics 

(16)-(17) is subject to constraints  

00 ( ) 1u t u   .       (20) 
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Logarithmic Consumption Index 

 Using variables 1( )x t , 2 ( )x t  we introduce the logarithmic consumption index in 

period t  

  
(1 )

0 2

1

( )
ln ( ) ln ( ) ln 1 ( )

( )

p x t
c t y t u t

a x t

 
     

 
 

   
(1 )

0 2

1

( )
ln ( ) ln 1 ( )

( )
bt p x t

a e m t u t
a x t




 
     

 
 

(1 ) (1 )
(1 ) 0 2

2
1

( )
ln ln ( ) ln 1 ( )

( )

bt
p x t

a e x t u t
a x t

 
  
 
 

   
           

.  (21) 

Considering the model dynamics (14)-(15) on the time horizon [0, ), ,T T    we 

introduce the integrated logarithmic index discounted with the discount rate , 0,    

 1 2( ), ( ), ( )J x x u    , 

(1 )
0 2

2
10

( )(1 )
ln ln ( ) ln 1 ( )

(1 ) ( )

T
t p x tb t

e a x t u t dt
a x t


  

 


   

            
 , (22) 

as the utility function for the optimal control problem. 

 

 Optimal Control Problem 

 We pose the optimal control problem related to the goal of raising the resource 

productivity. Namely, the problem is to maximize the utility function (22) over control 

processes  1 2( ), ( ), ( )x t x t u t  of the dynamic system (16)-((17) satisfying the initial 

conditions (18)-(19) and subject to constraints (20) for the control parameter ( )u t . 

 

 Special Case 1   

 Let us consider the special case when the elasticity coefficient in the price 

formation mechanism has the unit value, 1  .  

In this case the phase variables have the following form 

1
0

( )
( ) 1

bt M t
x t e

M

 

  
 

,      (23) 
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2 ( ) ( )
bt

x t e m t .       (24) 

The model dynamics is described by the system of differential equations 

  1
1 2

0

( ) 1
( ) ( )

dx t b
x t x t

dt M
  ,       (25) 

  2
2

( ) 1
( ) ( )

(1 )

dx t b
u t x t

dt


 
     

,      (26) 

with initial conditions  

1(0) 1x  ,        (27) 

*
2 (0)x m ,        (28) 

and constraints  

00 ( ) 1u t u          (29) 

for control parameter ( )u t . 

The utility function has the form similar to the structure (22) 

 
(1 )

0 2
1 2 2

10

( )
( ), ( ), ( ) ln ( ) ln 1 ( )

( )

T
t p x t

J x x u e x t u t dt
a x t


 


   

           
 .  (30) 

 

The Hamiltonian of the Optimal Control Problem 

Let us introduce the Hamiltonian function for the optimal control problem (25)-

(30) 

 
(1 )

0 2
1 2 1 2 2

1

, , , , , ln ln 1t p x
H x x u t e x u

a x


  


   

         
    

1 1 1 2 2 2
0

1 1

(1 )

b b
x x x u

M
   

  
       

   .    (31) 

Here parameters 1 2,    are adjoint variables for the phase variables 1 2,x x . 

Implementing the following change of variables  

1 1( ) ( )tt e t   , 2 2( ) ( )tt e t   ,     (32) 

we obtain the expression for the stationary Hamiltonian 

 
(1 )

0 2
1 2 1 2 2

1

, , , , ln ln 1
p x

H x x u x u
a x



  
 

     
 
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1 1 1 2 2 2
0

1 1

(1 )

b b
x x x u

M
   

  
       

,     (33) 

and relations between the Hamiltonians H  and H  

   1 2 1 2 1 2 1 2, , , , , , , , ,tH x x u t e H x x u      .    (34) 

 

The Maximized Hamiltonian 

 Let us maximize the stationary Hamiltonian H  (33) with respect to the control 

parameter u . It is not difficult to show that the Hamiltonian H  is strictly concave with 

respect to this parameter. Therefore (see [Krasovskii, Tarasyev, 2008]), three maximum 

regimes for the control parameter u , and, respectively, for the maximized Hamiltonian  

may take place.  

 The first regime corresponds to the zero value of the control parameter, 0u  . 

For this regime the maximized Hamiltonian has the following form 

 
(1 )

0 2
1 1 2 1 2 2

1

, , , ln ln 1
p x

H x x x
a x



  
 

    
 

 

1 1 1 2 2 2
0

1 1

(1 )

b b
x x x

M
  

  
  


.     (35) 

 The second regime arises at the upper bound for the control parameter, 0u u . 

The maximized Hamiltonian in this case is presented by the relation  

 
(1 )

00 2
2 1 2 1 2 2

1

, , , ln ln 1
p x

H x x x u
a x



  
 

     
 

 

0
1 1 1 2 2 2

0

1 1

(1 )

b b
x x x u

M
   

  
       

.    (36) 

 The third regime is connected with an intermediate maximum value of the optimal 

parameter and is determined by the maximum condition 

  2 2
1 2 1 2 (1 )

0 2

1

1
, , , , 0

(1 )
1

xH
x x u

u p x
u

a x



 



   

  
  

 

.   (37) 

Resolving the maximum condition (37) with respect to the control parameter u  

we obtain the relation for the intermediate maximum value 
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(1 )
* 0 2

1 2 2

(1 )
1

p x
u

a x x

 


 
   .       (38) 

It is clear from formula (37) that the adjoint variable 2  is negative, 2 0  , for 

the intermediate regime. 

The maximized Hamiltonian for the intermediate regime has the following form 

 3 1 2 1 2 2
2 2

(1 )
, , , ln lnH x x x

x

  


 
    

 
 

(1 )
0 2

1 1 1 2 2 2
0 1

1 1
1

(1 )

p xb b
x x x

M a x

   
  

 
        

.  (39) 

 

The Hamiltonian Systems  

Let us compile the Hamiltonian systems for the obtained three control regimes, 

1, 2,3,i   basing on the general constructions of the Pontryagin maximum principle  

 1
1 2 1 2

1

( )
( ), ( ), ( ), ( )iHdx t

x t x t t t
dt

 






,        

 2
1 2 1 2

2

( )
( ), ( ), ( ), ( )iHdx t

x t x t t t
dt

 






,       

 1
1 1 2 1 2

1

( )
( ) ( ), ( ), ( ), ( )iHd t
t x t x t t t

dt x

   
 


,      

 2
2 1 2 1 2

2

( )
( ) ( ), ( ), ( ), ( )iHd t
t x t x t t t

dt x

   
 


.    (40) 

In the first case ( 1)i   with the zero control regime, we obtain the following 

Hamiltonian system  

1
1 2

0

( ) 1
( ) ( )

dx t b
x t x t

dt M
  ,          

2
2

( )
( )

(1 )

dx t b
x t

dt  



,         

(1 )
01 2

1 1 2(1 )
10 2

1

( ) ( )1
( ) ( )

( )( )
1

( )

pd t x tb
t t

dt a x tp x t
a x t





  





  

 
 

 

,    
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2
2 2 1

0

( ) 1
( ) ( ) ( )

(1 )

d t b
t t t

dt M

   
 

   


      

0 2
(1 )

2 10 2

1

(1 ) ( )1

( ) ( )( )
1

( )

p x t

x t a x tp x t
a x t





 




 

 
 

 

.    (41) 

In the second case ( 2)i   for the upper bound control regime, one can get the 

Hamiltonian system  

1
1 2

0

( ) 1
( ) ( )

dx t b
x t x t

dt M
  ,          

02
2

( ) 1
( )

(1 )

dx t b
x t u

dt


 
     

,        

(1 )
01 2

1 1 2(1 )
0 10 2

1

( ) ( )1
( ) ( )

( )( )
1

( )

pd t x tb
t t

dt a x tp x t
u

a x t





  





  

 
  

 

,    

02
2 2 1

0

( ) 1 1
( ) ( ) ( )

(1 )

d t b
t t u t

dt M

    
 

        
     

0 2
(1 )

02 10 2

1

(1 ) ( )1

( ) ( )( )
1

( )

p x t

x t a x tp x t
u

a x t





 




 

 
  

 

.    (42) 

In the third case ( 2)i  , we have the following Hamiltonian system for the 

intermediate optimal control regime 

1
1 2

0

( ) 1
( ) ( )

dx t b
x t x t

dt M
  ,          

(1 )
02 2

2
2 2 1

( ) ( )1 (1 )
( ) 1

(1 ) ( ) ( ) ( )

pdx t x tb
x t

dt t x t a x t

 
  

  
         

,   

     

(2 )
01 2

1 1 2 2
1

( ) ( )
( ) ( ) ( )

(1 ) ( )

pd t x tb
t t t

dt a x t

   
 



  


,      

2
2 2 2 1

0

( ) 1
( ) ( ) ( ) ( )

(1 ) (1 )

d t b
t t t t

dt M

    
  

    
 
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(1 )
0 2 2

2 1

( ) ( )(1 ) (2 )

( ) (1 ) ( )

p t x t

x t a x t

  


 
 


.     (43) 

 

The Normalized Hamiltonian System 

For providing economic interpretations of the Hamiltonian dynamics we 

introduce the following change variables  

1 1 1z x ,  2 2 2z x       (44) 

for costs of material consumption 1x , 2x  by prices 1 , 2 , respectively.  

For the Hamiltonian dynamics of costs 1z , 2z  in the case ( 3)i   of the 

intermediate optimal control one can obtain the following system of differential equations  

1
1 2

0

( ) 1
( ) ( )

dx t b
x t x t

dt M
  ,          

(1 )
02 2

2
2 1

( ) ( )1 (1 )
( ) 1

(1 ) ( ) ( )

pdx t x tb
x t

dt z t a x t

 
 

  
         

,     

(1 )
01 2 2

1 1 2
0 1 1

( ) ( ) ( )1
( ) ( ) ( )

( ) (1 ) ( )

pdz t x t x t
z t z t z t

dt M x t a x t






  


,     

(1 )
02 2 2

2 1 2
0 1 1

( ) ( ) ( )1
( ) ( ) ( )

( ) ( )

pdz t x t x t
z t z t z t

dt M x t a x t

 


    .   (45) 

 

Steady State 

We are interested in existence of steady states for the Hamiltonian dynamics (45) 

which are connected with the structure of the optimal solution of the posed optimal 

control problem. The equilibrium conditions for steady states are presented by the system 

of algebraic equations 

1 2
0

1
0

b
x x

M
  ,         (46) 

(1 )
0 2

2
2 1

1 (1 )
1 0

(1 )

p xb
x

z a x

 
 

  
         

,    (47) 

(1 )
02 2

1 1 2
0 1 1

1
0

(1 )

px x
z z z

M x a x






  


,     (48) 
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(1 )
02 2

2 1 2
0 1 1

1
0

px x
z z z

M x a x

 


    .     (49) 

Let us note that the steady state solution can be considered as the “ideal” 

equilibrium state of the economic growth model at which the variables of material 

consumption 1x , 2x  and their costs 1z , 2z  keep constant equilibrium values. 

We find the solution for the steady state equations (46) analytically under the 

following conditions – regularity conditions, 

b 


  .         (50) 

The first inequality in (50) means that the effectiveness coefficient   of 

investment in raising the resource productivity should be greater than the discount rate 

 . The second inequality in (50) presumes that the discount rate   is larger than the 

growth rate b  of production factors since elasticity coefficient   is less than one, 1  . 

The steady state  * * * *
1 2 1 2, , ,x x z z  as the solution of equilibrium equations (46)-(49) 

under conditions (50) has the following analytical form 

      

1/

* * 0 0
1 2

0 0

1 1 b p M
x x

b M b M a b b


  

     

 
        

,   (51) 

      

1/

* 0 0
2

b p M
x

a b b


 

     

 
       

,     (52) 

 
 

   
 

* *
1 2

1
(1 )

1
(1 )

1

b

b
z z

b b

 


  
   

  
 

 
              

 

,   (53) 

   
 

*
2

1

z
b b


 

  
 

 
 

  
 

.      (54) 

Let us note that all coordinates of solution (51)-(54) have the property of well-

posedness due to the regularity conditions (50). 
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It is important also to estimate the value of the optimal control *u  at the steady 

state  * * * *
1 2 1 2, , ,x x z z  (51)-(54)  

* .
b

u
 

          (55) 

Due to regularity conditions (50) the value of the optimal control *u  is located in 

the proper range 

*0 1u  .          (56)  

It means that it is reasonable to make an assumption that the upper bound 0u  for 

the control parameter u  should satisfy to the following condition 

0 1
b

u
 

  .         (57) 
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