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Motivation

@ We study the economics of climate change by coupling spatial energy
balance climate models (EBCM) in which heat diffuses across
latitudes with economic growth models. This approach, integrates
solution methods for spatial climate models, that may be new to
economics, with methods of solving economic models, It provides new
insights regrading the spatial distribution of temperature, damages
relative to the more conventional integrated assessment models with
carbon cycle which do not account heat transfer across latitudes.

@ Integrated assessment models (IAMs) include space in the sense of
regional disaggregation (e.g.RICE 2010) but not heat transport across
latitudes.

© The interactions between heat diffusion and economic variables
however could be important in characterizing the spatial distribution

of damages due to climate change as well as the impacts of
mitigation policies
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Purpose-Energy Balance Climate Models (EBCM)

Characteristics

© Explicit incorporation of the spatial dimension into the climate model
in the form of heat diffusion or transport across latitudes.

e one, two-dimensional models

@ The presence of an endogenous ice line where latitudes north (south)
of the ice line are solid ice and latitudes south (north) of the ice line
are ice free.

© The underlying latitude dependent temperature function.
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]
EBCMs

Potential output

The use of a spatial EBCMs model allows us to:

o Estimate a distribution of temperature anomaly across latitudes.

o Estimate the spatial effects of climate change by deriving a damage
function that depends not on the average global temperature anomaly
but on the distribution of temperature anomaly across latitudes.

@ Introduce the concept “damage reservoirs” like ice-lines and
permafrost as possible second component of damages in addition to
the conventional components associated with conventional
temperature increase. With damage reservoirs marginal damages are
expected to be high initially and then decline as the ice-lines move to
the Poles and permafrost disappears. Once the reservoir is exhausted
there is no further damages

A. Xepapadeas (AUEB) Climate models and optimal policies IIASA, Vienna 12/2011 4 /40



.
Purpose

@ Couple ECBMs models with economic growth models and develop
general equilibrium one-dimensional unified models.

@ In the context of these models:

@ Explore the impact of heat transport across latitudes regarding the
endogenous spatial distribution temperature and damages, and derive
latitude specific response functions and measures of spatial inequalities
across latitudes.

@ Provide insights regarding the optimal temporal profile for general
equilibrium climate policies

@ Introduce the economics profession to the spatial EBCMs with heat
transport as a potentially useful alternative to simple carbon cycle
models.
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A Basic Energy Balance Climate Model (North 1975)

ol (a); t) = QS(x,t)a(x,xs(t)) — [l (x,t) —h(x,t)]+
D% (1 _X2) algi.t)

I(x,t) = A+BT(x,t), A=2014W/m? B =145W/m?

where units of x are chosen so that x = 0 denotes the Equator, x =1
denotes the North Pole, and x = —1 denotes the South Pole; @ is the
solar constant divided by 2; S(x) is the mean annual meridional
distribution of solar radiation which is normalized so that its integral from
-1 to 1 is unity; a(x, xs(t)) is the absorption coefficient which is one minus
the albedo of the earth-atmosphere system, with x;(t) being the latitude
of the ice line at time t; and D is a thermal diffusion coefficient that has
been computed as D = 0.649Wm—2°C~1

Outgoing radiation is reduced by h (x, t): accumulated carbon dioxide.
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Heat Transport and Spatial Aspects of the EBCM

The heat flux which is modelled by the term: D% [(1 —x?) a’g);'t)}
The ice line is determined dynamically by the condition :

T > —10°C no ice line present at latitude x
T < —10°C ice present at latitude x

and the ice line absorption drops discontinuously because the albedo jumps
discontinuously. North (1975a) specifies the co-albedo function as:

Koe) = { ©=038 x>
L 4 =068 |x| < xs
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EBCM with Human Emissions

Human input: h(x,t) =0 (x)¢In %Ot) where My denotes the

preindustrial and M (t) the time t stock of carbon dioxide in the
atmosphere, ¢ = 5.35 (IPCC 2001).
The stock of the atmospheric carbon dioxide:

M(r):/X:ll/s(x,t)q(x,t)dx_m/w(t), M (0) = Mo

Emissions are proportional to the amount of fossil fuels used.
The total stock of fossil fuel available is fixed or,

[Takne=aw . [Taw=r

=1

where g (t) is total fossil fuels used across all latitudes at time t, and Ry is
the total available amount of fossil fuels on the planet.
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A Basic Energy Balance Climate Model: Summary |

al (x, t)
Jat

I(x,t) = A+BT(x,t), A=201.4W/m? B =145W/m?

M (t)

h(X't):U(X)élnTO

M(t):/X):llﬁ(x,t)q(x,t)dx—ml\/l(t), M (0) = My

/XH g0t dc—q(t) | /qu(t):Ro

=1
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Energy Balance Climate Model and Approximations

BaTé);'t) = QS(x)a(x,xs) — [(A+ BT (x,t)) — h(x, t)] +
J oT(x,t)
DB& (1- x2)T
Approximation.

A satisfactory approximation of the solution for can be obtained by the so
called two mode solution where n = {0, 2} .

7A'(X, t) = Z To(t)Pn(x)

n even
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The Two Mode Solution

T(x, t) = To(t) + Ta(t) Pa(x)
Bch‘;ft) — —A- BTy(t) +
/11 [QS(X)oc(x xs) + &ln ’V’M(Ot)a(x)] dx
de,ft) = —B(1+6D)Ty(t) +
2/ [QS (x, %) +€ln MM(Ot)a(x)] Py (x)dx
To (0) = Too, T2 (0) = Tao, Pa(x) = (3X22— 1)

S(X) = 1—|—52P2(X) . S5 = -0.482
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The Impact of D and the Ice Line

If D — oo, then the solution T; (t) of (??) vanishes.

Thus for a given diffusion D < oo the relative contribution of T, (t) to the
solution T (t) can be regraded as an a measure of whether the heat
transport is important in the solution of the problem.

The ice line solves

To(t) + To(t; D)Pa(xs(t)) = Ts, Te = —10°C

and is given by a solution of the ice line condition above, i.e.

a2 (528
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A Basic Energy Balance Climate Model: Summary Il
(Climate)

T(x,t) = To(t) + To(t; D)Pa(x)
de: ) A BTo(t) +
1 ; M (1)
/_1 |:QS(X>IX<X, T(x,t))+¢lIn 70(7 (x)] dx

2/ [QS (x, T(x,t)) +Cln A/jw(;)a(x)] P> (x)dx
To(t) + Ta(t; D)Pa(xs(t)) = Ts, Ts = —10°C
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A Basic Energy Balance Climate Model: Summary Il
(Humans)

h(x,t):(T(x)CInM,Vg;)
W () :/Xx_z_llﬁ(x,t)q(x,t)dx—ml\/l(t), M (0) = Mo

[ anac=a . [Tat)=r

=1
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Results from a Simplified Climate Model

a(x) =ay—aiP2(x), that S(x) =1 —soP> (x) (ap = 0.681, a; = 0.202,
so = 0.477) (North at al. 1981).

The two-mode approximating ODEs become

=5~ o0+ | (@5(a(x), 1) + 2 2 (o
dT2

— = —(1+6D)To(t) + % (QS(x)a(x), P2(x))

Set 4le = 912 = (. Then

P M) G
T(X,t,D)—C0+C1|n Mo (1+6D) () G, G, G>0
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For an exogenous growth of the atmospheric CO, concentration,
M (t) = My exp (gt), we can obtain the spatial and temporal plot of the
temperature function. (g = 1.26%)

T(0,0) =36°C, T(1,0) = T (—1,0) = —23°C
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When D — oo the temperature function is 'flat’ across latitudes at the
temperature of approximately 15°C

A. Xepapadeas (AUEB)

Climate models and optimal policies



The Temperature Anomaly
TH(x,t;D) = T (x,t;D) — To (x, t), where Ty (x, t) is distribution of

temperature across latitudes as implied by existing data (NASA) for a
benchmark period (1880-1900)

100
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A Latitude Dependent Damage Function

1

QT" (x.:D)) = L+ () 0T+ (x, :D) +w (x) 62 (T (x. £: D))?

1-Q(T" (x,t;D))
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Climate Response Functions

dTo(t) = (97o,m)dM(t), dT2(t) = (97, m)dM (t)
dT (t,x) = dTo(t)+ P2 (x)dT,(t) =

[(975,m) + (I75,m) P2 (x)] dM (2)

The impact on damages will then be determined as:

dOQ (T (x,t)) = QF [dTo (t) + P2 (x)dT2 (t)] =
OF [(970,m) + (97,,m) P2 (x)] M (t)
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An Economic EBC Model

Y (t.x) = Al t)QUT(x,t))F(K(x,t), L(x. t), q(x, t))
= e(a+”"‘L)t‘I’(x, T(x, t))K(x, t)* q(x, t)*

The “potential world GDP at date t". (potential GDP).
Frotal (K (1), q(1), { T (x, ) 201 i x, ) = Frorar (K (1), q(t), T t)
K<t)+(5K( )_ Ftota/(K( ) q( ) T t)
()= jxtdai=CKg

Frotal (K (£), a(£), T £) = [Tt K (8)*% g(£)% | J(£; D)

U\~ e D) ¥ (x, T, 1)1/
J({TenRt) = a0) = | { T H00, Tor 0 ] }
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]
Welfare Maximization in an EBCM

max /000 e ft /X L(x, t)[U <i((j: :'))) — Qc(T(x t))]dxdt
subject to:

@ Climate dynamics

Resource contrarian for the economy

Total consumption and total fossil fuel constraints,
States: v = (K (t),R(t) , M(t), T (t,x)),
Controls: u= (C (t),C(x,t),q(t),q(x,t))

A. Xepapadeas (AUEB) Climate models and optimal policies IIASA, Vienna 12/2011 22 / 40



Hamiltonian

H = /)(L(x,t)[U(i((X't))>—QC(T(x,t))]dx—i—

A () [P (K(2) 9(2), T £) = C(£) — K (1)
e (6) (= (0)) + w 0) | [ B(2)a () = (1)

+A7 (t, x) [ [QS(x)a(x, T(x,t)) — (A+ BT (x, t))

~oen i+ oss (-0 e ]

i (1 [c<r>— [ ctxtrax| 4y (0 [att) = [ atx 0y |
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Maximum Principle-Controls

C(t),C(x,1t)
q(t)

q(x, t)

or Flfotal,q

A. Xepapadeas

(AUEB)

M () = e (0= U (1)
Ak (t) Fi.{otal,q = AR (t) — Hy (t)
Am (t) B(t) = py (
AR (t) = Am (t) B(

Ak (1)

Climate models and optimal policies

IIASA, Vienna 12/2011
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Maximum Principle - Costates

i (8) = [P+ 6 = Floy i (K() 9(2), Ti )] A (2)
(6= pra (0

é’ 1
A (6) = (p+m) A (8) + gy |, o (AT ()

At (6.6) = (p+ 1) A7 (6.) + L(6,) O 7 (T (£,%))
A (8) Floar (K (2), a(1), T3 ) —
QS(X)AT (t,x) da(x, T(x,t)) d [( 152 OAT(x,t)

~ D% ) ox

B oT ox
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Optimal Paths

{K*(t; D), K* (t,x; D) R* (t; D), M* (t; D), T* (¢, x; D)}ﬁzl_l
x=1

{C*(t;D),C"(x,t;D),q" (t: D), q"(x,t; D)}, _ "
{Ak (£:D), Ak (£:D) Ay (£:D) A% (8 D)L

X *
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Equilibrium in the EBCM

Consumers

© C(x,t) _
{Cr?%}{/tzoe PtL(x, £)U < [ t)> —Qc(T(x, t: D))dt}
subject to
C(x, t)+ K(x,t)+B(x,t) = r(t)(K(x, t) + B(x,t)) + I(x, t)
B(x,0) =0, K(x,0) = Ko(x)
I(x,t) = w(x, t)L(x, t) + spr(x, t)Ter(t) + stax (x, t) Tax(t)
FONC

U <CL(E<>;.?)> = A explpt — [ tzo r(s)ds)

A(x) = A(x") endowment reshuffling
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Equilibrium

Consumption goods producing firms

max {A(x, t)Q(T(x, t))F(K(x, t), L(x,t),q(x, t))—
(r(t) +0)K(x, t) = w(x, t)L(x, t) = p(t)q(x, t)}

Optimality conditions:

Fie(K(x,t),L(x,t),q(x,t), T(x,t)) = r(t)+6
Fo(K(x,t), L(x, t),q(x,t), T(x,t p(t

In market equilibrium

).LK (X, t) = (p—l—é—Fll() Ak (X, t)
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Equilibrium

Fossil fuel firms

max [ exn(= [ r(9)d8)[(p(e) = 0()a(e)(1 = T(e)) e
subject to /tooo q(t)dt < Ry

FONC

(b(6) =)L~ 7(0) = moexp( [ r(s)as), o
(F = 00D —7(6) = ool [ r(s))
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Market Equilibrium

Consumption goods firms at latitude x will choose demands K(x, t) and
q(x, t) to set

r(t)+6=Fj, p(t) = FZ,
For a multiplier value i, that exhaust the fossil fuels reserves and
parametric temperature
(K t:T) K(t:T),q(x,t:T),q(t: T) L,

Substituting the paths into carbon and temperature dynamics will provide
the corresponding paths for carbon dioxide accumulation and temperature.

{K®(x,t;D),K®(t; D), e(x t;D),q° (t;D),R°(t; D) }:_
{M® (t;D), T¢(t,x; D)} —

x—fl

X*—l
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.
Optimal Taxation

Intertemporal endowment flows /(x, t)s have been augmented so that
Ak(x,t) = Ak (X', t) = Ak (t; D)

Optimal taxes can be determined by equating private and social marginal
products for fossil fuel

% AR (tD)=Ay(:D)B el
0" (1) = . A (t; g) o (l—OT*(t))

eXP(/st r(s)ds) = €'

=0
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The Temporal Profile of Optimal Taxes

Lemma: {(t) = [ oAT(t,x; D)dx <0, A}, (t; D) <O0.
Proposition: If m < §, then the optimal profit tax decreases through
time, or T* (t) < 0. Furthermore, the optimal unit tax on fossil fuels grows

)

A decreasing T (t) implies

B A dl(Ak— bA) /At

P [k — bAM /M
or using the optimality conditions for the costate variables

P
p*
[6A% + BAjy(m — 8) — (BE/BM (1)) [y oA’-dx]

(Ak — bAjy)
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The impact of co-albedo and thermal transportation

The discounting function effect
[ oA (t,x) dx = { the global shadow cost of temperature across
latitudes: It holds { = v{ — & (t), where

_ Q ([ oAr (x,t;D)S (x)(0a/0T) dx
v:p+1—< fxaAT(X,t;D)dx )

B
Since da/dT > 0 the discounting function v falls. Forward discounted
costs of climate change higher than when for the co-albedo function
da/dT = 0.
The damage effect

J(t;00) = Q(To(t;00)) /X { S A, 0)1 /% L(x,0)] }dx

[ A, 0) /% L(x!, 0) dx’] ¥ F4a

Impact of D : = |J(t;00) — J(t; D)|
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Approximations and Numerical Simulations

We simplify the economic model by assuming: (i) linear utility, which
means v — 1, and (ii) that the stock of capital relaxes fast, relative to the
rest of the system to its steady state. These assumptions allows us to

write the problem as a most rapid approach path (MRAP) problem.
The objective becomes

/°° e Pt C(t)dt — [/Oo e(*p+n)f/L(X,0)QC(T(X, t)dx| dt,
t=0 t=0 x

For a two-mode approximation with fast relaxing modes we can write
T (t,x;D) =1 (M (t);x, D). Define the damage functions as:

/XL(X,O)QC(T(x,t;D)dX — Dc(M(t);D),

¥(x, T(x,t); D)l/M - |
/X { [[J¥ (X, T(X, t; D)l/aLdX/]aK"raq } dx = Dr(M(t);D)
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The Social Optimum

max /oo e Pt [e(a+"aL)tK () q () Dr (M (t); D)
K.q Jt=0

[ee]

—(p+)K(t)]dt— Ut
subject to
M= Bqg—mM, M(0) =M

[Taw=< R

., el=P*MtD (M (t); D) dt]

Socially optimal time paths: {Ks (t),q° (t), M3 (t), A3, (t)} and the
multiplier Ag
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Socially Optimal Paths

1

K (0) = anep (L0 (g~ pw) H DF (M (1)50)

= ()] il e (2o

q° (t) = cqexp [(at:aL) } (Aq ,BAM)_I_;Z Dg (/\//(t);D)i
M (t) = —mM (t)+Bg° (t), M(0) = My

Am = (p +m)/\M+entDCM(M( ):D) —

el7tmLtKS ()™ q° (£)* Df yy (M (t); D)

Aq [/ qs(t)dt—Ro] —0, Ag>0
0
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The Laissez Faire Problem

Equilibrium time paths for {K (t; D), q (t; D), M (t; D)} can be
determined as:

K® (£:D) = p(0) " ek Dr (M (£); D) exp (*L‘"t)
a 1/a;
oo={[(3) ra] 25

p(0) 7 cuDr (M (£): D) exp [(*L‘" —p) t]

ar

M () = —mM () + Bq® (£), M (0) = My

q°(s)ds < Ry
s=0
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Inequalities Across Latitudes

Latitude specific damages:
L(x,0)Q¢(T¢(x,t;D) = D¢ (x,t;D),
Y(x, T¢(x, t; D))/
[fX/T(X/, Te(X/v t: D)l/ade’] ax+aq
Latitude Specific Welfare and Production
W (x; D) =
/:O e ft [e(””aL)tKe (t,x; D)™ q° (t, x; D)* DF (M° (t; D))

= Df (x,t;D).

—0K*® (t,X; D)] dt — [/00 e(—P+n)tDé (Me (t; D)) dt]
t=0
Q(x;D) =
/°° e Ft {e<a+"at>f;<e (t,x; D) ¢ (t,x; D)* DX (M€ (t; D))} dt
t=0
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Inequalities Across Latitudes

Latitude Specific Social Cost of Carbon - Output Cost of Carbon

oW (x; D) 9Q(x;D)
oMe (t; D)" oMe (t; D)

Consumption - Production Related Damages
De (x:D) = / e=PHNEDX (M€ (£ D)) dt
t=0

Dr (x:D) = /:OePfD;(Me(t:d))dt
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Numerical Simulations - Laissez Faire Equilibrium

@ Use of 2667 Giga Tons of Carbon in 150 years

@ Current temperature of 36°C for the equator and -19°C for the Poles.

@ Temperature without taxes increases uniformly by approximately 8
degrees within 150 years

=
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