Linking ecological and genetical approaches of maturation reaction norms

Bruno Ernande Laboratoire Ressources Halieutiques IFREMER, Port-en-Bessin, France and Adaptive Dynamics Network IASA, Laxenburg, Austria

Objectives

requenc

- Evaluate/disentangle genetic and environmental variation in maturation tendency of exploited fish stocks
- Backward estimation of genetic variance erosion and/or shift of genetic mean in maturation tendency
- Forward prediction of future evolution of maturation tendency

forwarc

backwa

genotypic values for maturation tendency

The concept of probabilistic reaction norm

The concept of probabilistic reaction norm

Turning probabilistic maturation reaction norms into classical quantitative traits

Turning probabilistic maturation reaction norms into classical quantitative traits

Two quantitative approaches

Size

• A bivariate approach with age and size at maturation as two correlated quantitative traits (a_m, s_m)

g.

Age, a

 \mathbf{g}_1

An infinite-dimensional approach with the reaction norm in itself being a quantitative trait $s_m(a)$

Two quantitative approaches

Size,

- A bivariate approach with age and size at maturation as two correlated quantitative traits (a_m, s_m)
- An infinite-dimensional approach with the reaction norm in itself being a quantitative trait $s_m(a)$

Age, a

Two quantitative approaches

Size

- A bivariate approach with age and size at maturation as two correlated quantitative traits (a_m, s_m)
- An infinite-dimensional approach with the reaction norm in itself being a quantitative trait $s_m(a)$

Age, a

Bivariate phenotype : the basic model

ndividual growth henotype environment beyond growth

 $\begin{pmatrix} a_m \\ s_m \end{pmatrix}_{igkl} = G_i + E_g + E_k + E_k$

e_{igkl}

 $I_{G_i \times E_g} + I_{G_i \times E_k} + I_{E_g \times E_k} + I_{G_i \times E_g \times E_k} +$

interactions

micro-environment

Bivariate phenotype : (co)variance components

genotype Phenotypic g variance g

growth environment beyond growth

 $V_P =$

 $V_{G \times E_q} + V_{G \times E_k} + V_{E_q \times E_k} + V_{G \times E_q \times E_k} +$

interactions

micro-environment

 $V_G + V_{E_g} + V_{E_k} +$

 V_e

What can we extract using the bivariate approach?

What can we extract using the bivariate approach?

The growth-related environmental (co)variance can be estimated as the (co)variance of the mean age and size at maturation conditional to growth

→ V_{Eg}
 The distribution of age and size at maturation can be averaged over growth rates, which gives access to an upward biased estimate of genetic (co)variance,

 $\rightarrow V_G + V_{E_k} + V_{G \times E_k}$

An upward biased estimate of the variance related to the genotype-growth interaction can be obtained by substracting the twoi previous estimates from total phenotypic variance,

$$\rightarrow V_{G \times E_g} + V_{E_g \times E_k} + V_{G \times E_g \times E_k}$$

Infinite-dimensional phenotype: the basic model

Individual phenotype

genotype

environment beyond growth

micro-environment

 $s_m(a)_{ikl} = \emptyset_i(a) + \mathbb{S}_k(a) + \mathbb{M}_{kl}(a)$

Infinite-dimensional phenotype:

variance components

Phenotypic variance

genotype

environment beyond growth

micro-environment

 $\mathfrak{F}_{\mathfrak{P}}(a) = \mathfrak{F}_{\mathfrak{P}}(a) + \mathfrak{F}_{\mathfrak{P}}(a) + \mathfrak{F}_{\mathfrak{M}}(a)$

What can we extract using the infinite-dimensional approach?

81

نې 50

Probability of maturing 1.00 0.75 0.50 0.25 0.00

What can we extract using the infinite-dimensional approach?

The whole distribution of age and size at maturation can be inferred from the probabilistic maturation reaction norm

requency

What can we extract using the infinite-dimensional approach?

Since the effect of growth is already removed in the infinitedimensional approach, the phenotypic variance of the infinitedimensional approach is already an upward biased estimate of genetic variance

 $\rightarrow \mathfrak{P}_{\mathfrak{P}}(a) = \mathfrak{P}_{\mathfrak{q}}(a) + \mathfrak{P}_{\mathfrak{q}}(a) + \mathfrak{P}_{\mathfrak{m}}(a)$

What are future needs of research?

The coefficient of relatedness between individuals is needed to obtain unbiased estimates of

 $\xrightarrow{} V_G, V_{G \times E_g}$ $\xrightarrow{} \stackrel{\bullet}{} (a)$

Classical quantitative genetics experiments with controlled mating design

- Advantage: high statistical power
- ✓ Disadvantages:
 - → long experiments (maturity of most commercially exploited fish occurs late in life),

experimental environmental variation might be not representative of natural environmental variation

What are future needs of research?

Using micro-satellites to determine the coefficient of relatedness between individuals in the wild
Advantage:

representative of natural environmental variation
information available immediately

Disadvantages:

is it possible?,
low statistical power