
Observations:

1.        Biological theorising  is  often  done  in terms of   optimisation  models

2. The quantity optimised customarily is supposed to be a “fitness measure”

3. Two  commonly used  demographically based  fitness measures  are

the  intrinsic rate  of  natural  increase   r,
and

the mean lifetime offspring production  R0

(usually,  but mistakenly,  called  basic reproductive rate  as it is not a  rate  but a  ratio)

4. Some  others  are

the rate of energy gain
and

the carrying-capacity  K

However, . . . . . .
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PROBLEM  WITH  OPTIMISATION:

implicit assumption that
the fitness landscape is constant

⇒  no diversification !
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Questions:

1. Under what conditions can evolution be conceived as optimising?

2. What  does  the  optimisation  principle  look like  in  each  case?

3. In  particular,   when  is   the  quantity  to  be  optimised    r   or   R0?

4. Does  all  this  attention  to  logical  rigor  make  a  difference?

Convention:

Whenever I say / write
  “all E”

I mean
“all   E   that can occur as   EAttr(X)  for some  X”.

X: trait value of resident

Environment Y: trait value of mutant

fitness (rate of exponential growth in numbers) of mutant:

ρ(Y,Eattr(X))  =: sX(Y)

* Y has a positive probability to invade into an X community
    if and only if  sX(Y) > 0.

Setting the stage: the steps of evolution
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                           ESS  argument:

(1) Calculate for each   Eattr(X)   the fitness   ρ(Y,Eattr(X))
      for all  potential trait values  Y.

(2) Determine  for each trait value  the mutant which
      maximises ρ(Y,Eattr(X)).  The result is a function  Yopt(X).

(3) Vary  X  to find  an evolutionarily unbeatable value  X*,
      i.e.,  an  X*  such that

                              Yopt(X*)  =  X*.

resident  X

mutant  Y

ρ(Y,Eattr(X))

(4) Ascertain that  the set of trait values X0  from which X* is approximated
      with non-zero probability  through a sequence X0, X1, X2,…,   such that

    ρ(Xi+1,Eattr(Xi)) > 0,

          is  sufficiently  large  to warrant  consideration   of   X*   as   a  potential
      evolutionary  trap.

optimal

X*

ESS:   X*



Remarks:
(i)  For the first type  of  ESS calculation  we
may replace sX(Y) by any function, say f(X,Y),
such that for each X
                  f(X,Y)  and  sX(Y)
are monotonically related  as functions  of  Y.

(ii) For  all  ESS calculations  we may replace
sX(Y) by any function,  say g(X,Y),  such that

             sign sX(Y)  =  sign g(X,Y)

(iii)  When the community dynamics  always
has a global point attractor

       sign ln(R 0(Eattr(X),Y)  =  sign sX(Y)

sx(Y)

resident  X

mutant  Yoptimal

X*
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                             Questions:

1. Under what conditions can evolution be conceived as optimising?

2. What  does  the  optimisation  principle  look like  in  each  case?

3. In  particular,   when  is   the  quantity  to  be  optimised    r   or   R0?

4. Does  all  this  attention  to  logical  rigor  make  a  difference?
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Definition:

*  We shall call a function  ψ  of  X  to the real numbers with the property

that evolution maximises  ψ  for any constraint on  X  an

optimisation  principle.
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Some  sign  structures  of  (y,Eattr(x)) that  support  an  optimisation  principle:
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Convergence:

An Optimisation Principle
is
a Lyapunov function for the substitution proces

But
a Lyapunov function for the substitution proces
is not necessarily
an optimisation principle.

Optimisation Principles are derived as properties of
families of models:
ecology plus trait space
plus all possible constraints on the trait space

Lyapunov functions are properties of a single model:
ecology plus trait space.

                             Questions:

1. Under what conditions can evolution be conceived as optimising?

2. What  does  the  optimisation  principle  look like  in  each  case?

3. In  particular,   when  is   the  quantity  to  be  optimised    r   or   R0?

4. Does  all  this  attention  to  logical  rigor  make  a  difference?

J.A.J. Metz




HEURISTICS  (i)

“Being more “efficient” increases your fitness
in any relevant environment.”

HEURISTICS  (ii)

“Evolution minimises the availability
of a limiting resource”

                                                   Definition:

*  We shall call a function  ψ  of  X  to the real numbers with the property

that evolution maximises  ψ  for any constraint on  X  an

optimisation  principle.

 And we shall call a function  φ  of  E  to the real numbers with the property

that evolution minimises  φ(Eattr(X))  for any constraint on  X,  a

pessimisation   or  Verelendungs  principle.

HEURISTICS:    Let ψ(X) be a prospective optimisation principle:

Then we expect by analogy of heuristics (i) that ρ can be written

as

ρ(X,E) =   α(ψ(X),E),

with α increasing in its first argument, i.e. ψ.

The knowledge that only the sign of ρ matters lets us modify this to

sign ρ(X,E)  =  sign  α(ψ(X),E).
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Definition:

* We shall say that

the trait vector acts
effectively one-dimensionally & monotonically

whenever there exists a function  ψ  of  X  to the real numbers such that

  sign ρ(X,E)  =  sign α(ψ(X),E),

for some function α which increasse  in  its  first  argument.

* We shall say that

the environment acts
effectively one-dimensionally & monotonically

whenever there exists a function  φ  of  E t o the real numbers such that

  sign ρ(X,E)  =  sign β(X,φ(E)),

for some function  β   which increases  in  its  second  argument.

Example:
Assume that we only need to deal with constant environments, i.e., the community can
alsways be assumed to be in a population dynamical equilibrium

Whenever

(*) R0(X,E) = φ(E)R0(X,EV), “V” for “virgin”,

Take

α :=  ln[R0], α :=  ln[R0], ψ := R0(X,EV),

with R0 the so-called

basic reproduction ratio,

i.e., the lifetime production off offspring.

[(*) applies i.a. when the trait and the negative effect of the environment act in
different life stages.]

J.A.J. Metz




Re the concept of “effectively one-dimensionally & monotonically  acting
environment”:

Any   φ   such  that

sign ρ(X,E)  =  sign β(X,φ(E)),

with   β   increasing  in  its  second  argument,

can  be  interpreted  as  a

measure of environmental quality,

as perceived through the physiology of our individuals.

Propositions:

1: Models  in which
the trait vector  acts effectively one-dimensionally & monotonically
have an optimisation principle,

and vice versa.

2: Models  in which
the environment  acts  effectively one-dimensionally & monotonically
have an optimisation principle,

and vice versa.

3: For  any  optimisation principle   there  exists
a matched pessimisation principle,   and vice versa.
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                Examples (from evolutionary epidemiology):

          I: density of infectives  S: density of susceptibles

Population equations:

                    dI/dt = [βS - α - d(S,I)] I dS/dt = [b - d(S,I) – βI] S

         with         d(S,I)  =  d0 + h(S,I)  and either

(1)     h(S,I) = κS,     (2)     h(S,I) = κS2,      (3)     h(S,I) = κ (S + I)

[in all three models the attractor is always a stable point equilibrium]

R0 of mutant in given (S,I) background:    nature of feedback loop:

(1) R(α,β;S,I)  =  β S / [α + d0 + κ S]   1 dimensional, monotone

(2) R(α,β;S,I)  =  β S / [α + d0 + κ  S2]  1-dimensional, non-monotone

(3) R(α,β;S,I)  =  β S / [α + d0 + κ  (S+I)] 2-dimensional

       Optimisation principles:

To calculate the optimisation principle for model (1)  use:

          R(α,β;S,I)  =  β S / [α + d0 + κ S]

   S* =  (α + d0) / (β - κ)

Pessimisation principle:

       R increases in S,   therefore  S*  is minimised

Optimisation principle:

Minimising S* means minimising  (α + d0) / (β - κ),  i.e., maximising

     - (α + d0) / (β - κ),      or      (β - κ) / (α + d0),      or     . . . .



               Technical check (i)
To judge the effective dimension / monotonicity of the feedback loop we should
 compare over the different values of  (α,β)

 the dependence of   R(α,β;S*(α,β),I*(α,β))  on  (α,β)

 locally around those (α,β) that make R(α,β;S*(α,β),I*(α,β)) = 1.

To show that in model (2) the feedback loop is non-monotone we start from:

    R(α,β;S,I)  =  β S / [α + d0 + κ  S2],       S* = [β - (β2 – 4 κ (α+d0))1/2] / ( 2κ)

R depends on E = (S,I), and therefore on (α,β), in a 1-dimensional manner
(through S only).

The maximum of R as a function of  S  lies at  Smax(α,β) = [(α+d0)/κ]1/2.

Let (α,β) ∈ M := {(α,β) | Smax(α,β) = S*(α,β)}.   Then  R(α,β;Smax(α,β)) = 1.

(∅ ≠ M  is a curve in the (α,β)-plane.)

For   sign ln[R(α,β;S)]   to be monotonically related to some  φ(E)

this φ should be maximal at  S = Smax(α,β).

As Smax(α,β) varies when (α,β) is varied,  no single  φ  can do this job.

α

β

β

α

Let  sign ln[R(α,β;S*(α,β),I *(α,β))] = sign g(α,β; φ(E))   for some function φ
from E to the real numbers and a function g (not necessarily monotone in  φ).

Then curves φ(S*(α,β),I *(α,β))= φ0,  with φ0 defined by  g(α,β; φ0) = 0

map into curves  R(α,β;S*(α,β),I *(α,β)) = 1.

A curve through a point (α,β) = (α,β) should not change when we change

(α,β) in  such a manner that the resulting curves still pass through that point.

} curves of constant φ



        Technical check (ii)

To judge the effective dimension / monotonicity of the feedback loop we should
 compare over the different values of  (α,β)

 the dependence of   R(α,β;S*(α,β),I*(α,β))  on  (α,β)

 locally around those (α,β) that make R(α,β;S*(α,β),I*(α,β)) = 1.

To show that in model (3) the feedback loop is 2-dimensional we start from:

   R(α,β;S,I)  =  β S / [α + d0 + κ  (S+I)]

    I*  =  [(b-d0)(β-κ) – α – d0] / (β2 – κ2 + κ),        S*  =  (α + d0 + κ I*) / (β-κ)

Define curves  C(α,β)  in  (α,β)-space by  R(α,β;S*(α,β),I*(α,β)) = 1.

If the feedback loop were effectively 1-dimensional,   then for all (α,β)

the tangent at (α,β) = (α,β) to the curve R(α,β;S*(α,β),I*(α,β))=1 in (α,β)-space

should not vary when (α,β) moves over C.

          Manipulating partial derivatives shows that this is not the case.

   On 1-dimensional but not necessarily monotonic E

conjecture:  PIP is skew symmetric  (Stefan Geritz)

"proof": (a)  ++  regions generically are excluded  as generically
there cannot be an internal population dynamical equilibrium,
which should be there by Brouwer's fixed point theorem.
(b)  --  regions are also generically excluded  as for those
configurations there also should be an (unstable) fixed point:

The two boundary fixed points have an open domain of attraction.
The complement the community state space is invariant.
Remove far away points and the neighbourhood of (0,0).
This gives an invariant closed set and therefore a fixed point
by Brouwer's theorem.

Skew symmetric PIP that allows Rock Scissors Paper behaviour
(Eva Kisdi):
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                                                Assumption:

We  only  need  to  deal  with
                                              constant  environments,
i.e.,    the  community  can  always  be  assumed  to  be  in
                                    population  dynamical  equilibrium.

                                                 Proposition:

For constant environments

                      ρ(X,E)  =  r(X,E).

Moreover,

>  0 >  1
r(X,E) =  0         if  and only if         R0(X,E) =  1   

<  0                                          <  1,

allowing the replacement of   ρ   in the ESS recipe by   ln[R0].

Definition:

We shall say that

evolution  just  maximises  r,  or R0,

whenever

r(X,E0),   respectively    R0(X,E0),

is  an  optimisation  principle   for every choice of  E0.

                             Questions:

1. Under what conditions can evolution be conceived as optimising?

2. What  does  the  optimisation  principle  look like  in  each  case?

3. In  particular,   when  is   the  quantity  to  be  optimised    r   or   R0?

4. Does  all  this  attention  to  logical  rigor  make  a  difference?
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Proposition:

Evolution  just  maximises   r,  or   R0,

if and only if

it deals   with  a  combination  of  life histories and
ecological embedding such that is possible to write

r(X,E)  =  α(r(X, E0),X),

or
R0(X,E)  =  exp[α(ln[R0 (X, E0)],X)],

respectively,

with   α   increasing  in  its  first  argument,

and   E0   fixed,  but  otherwise  arbitrary.

Examples:

1: Whenever the environment makes itself felt only through an additional death rate µ(E),

     acting equally on all individuals,  r(X,E) can be expressed as

r(X,E) = r(X,EV)- µ(E),

EV the virgin environment. Therefore evolution within those confines just maximises r.

2: Whenever the trait and the environment affect non-overlapping life stages,
     R0(X,E) can be expressed as

R0 (X,E) = φ(E)R0 (X,EV),

EV the virgin environment. Therefore evolution within those confines just maximises R0.

                             Questions:

1. Under what conditions can evolution be conceived as optimising?

2. What  does  the  optimisation  principle  look like  in  each  case?

3. In  particular,   when  is   the  quantity  to  be  optimised    r   or   R0?

4. Does  all  this  attention  to  logical  rigor  make  a  difference?
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       In general:  In the Virgin environment:

Length of juvenile period   T(TV,E)      TV
Juvenile death rate     µJ(E)      µJV
Adult death rate    µA(E)      µAV
Birth rate (to adults)    b(TV,E)      bV(TV)  =  (TV - 1)+

       1.  E  only equally additively  affects
             the  juvenile  and  adult  mortality
             rates
                      maximise  r
       2.  E  only   additively  affects  the
             adult  mortality  rate

                      maximise  R0

       3.  E  only   multiplicatively  affects
             the reproduction  rate
                      maximise  R0

       4.  E   only   additively  affects  the
             age  at  maturation  (but not the
             birth rate)

                      maximise  R0

       5  E   only   multiplicatively  affects  the
             age  at  maturation  (but not the
             birth rate)
                        maximise
                       TV

-1[ln(bV(TV)) - ln(µAV)]
       6.  E  only   additively  affects  the
             juvenile  mortality  rate:
                      maximise
                       TV

-1[ln(bV(TV)) - ln(µAV)]

A
µJ

µAduration  T

b

TV

bV
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