

First a note about the colour coding:

Mutual invasability: also consider "role reversal" of x and y
x_{1} can invade x_{2}-population but not vice versa x_{2} can invade x_{1}-population but not vice versa x_{1} can invade x_{2}-population and vice versa

The classification of evolutionarily singular points, an algebraic approach

x^{*} is a singular point iff

$\left.\frac{d s_{x}(y)}{d y}\right|_{y=x=x^{*}}=0 \quad$ (x^{*} is an extremum in the y-direction)

Linearization around $x=y=x^{*}$

$$
\begin{array}{r}
s_{u}(v)=a+b_{1} u+b_{0} v+c_{11} u^{2}+2 c_{10} u v+c_{00} v^{2} \\
+ \text { h.o.t }
\end{array}
$$

neutrality of resident

x^{*} is an extremum in y

$$
s_{0}(0)=0 \rightarrow b_{1}=b_{0}=0
$$

Dimorphic linearisation around $x_{1}=x_{2}=y=x^{*}$, :

$$
\begin{array}{lll}
\text { Local coordinates: } & v=y-x^{*} & \text { mutant } \\
u_{1}=x_{1}-x^{*}, u_{2}=x_{2}-x^{*} & \text { residents }
\end{array}
$$

Only directional derivatives (!):

$$
u_{1}=u w_{1}, \quad u_{2}=u w_{2}
$$

$\mathrm{s}_{\mathrm{u}_{1}, \mathrm{u}_{2}}(\mathrm{v})=\alpha+$

$$
\begin{equation*}
\beta_{1}\left(w_{1}, w_{2}\right) u+\beta_{0} v+ \tag{*}
\end{equation*}
$$

$\gamma_{11}\left(w_{1}, w_{2}\right) u^{2}+\gamma_{10}\left(w_{1}, w_{2}\right) u v+\gamma_{00} v^{2}+$
h.o.t.

parameter space

parameter paths

attractor paths

Dimorphic linearisation around $x_{1}=x_{2}=y=x^{*}$, II:

Dimorphic linearisation around $x_{1}=x_{2}=y=x^{*}$, III:

$$
\mathrm{S}_{\mathrm{u}_{1}, \mathrm{u}_{2}}(\mathrm{v})=\left(\mathrm{v}-\mathrm{u}_{1}\right)\left(\mathrm{v}-\mathrm{u}_{2}\right)\left[\mathrm{c}_{00^{+}} \text {h.o.t }\right]
$$

$$
\mathrm{c}_{00}<0 \quad \mathrm{c}_{00}>0
$$

Some further useful consistency conditions:

Bifurcations of evolutionarily singular points

seed size evolution: Trait Evolution Plots

Application: Unfolding the Hawk-Dove game

The Hawk-Dove game

Pay-off table:
H
$\frac{1}{2}(V-C)$
D

Population dynamics:

First round: Let \mathbf{P} be the probability to encounter a, temporary, Hawk. An individual with inborn probability p of playing Hawk accrues a contribution $\mathrm{pP} \frac{1}{2}(\mathrm{~V}-\mathrm{C})+\mathrm{p}(1-\mathrm{P}) \mathrm{V}+0+(1-\mathrm{p})(1-\mathrm{P}) \frac{1}{2} \mathrm{~V}$ to its effective fertility. To this is added a basic fertility $\frac{1}{2} B$ giving it an overall effective fertility $\frac{1}{2}[B+V(1-P)+(V-C P) p]$. Second round: Density dependence allows only a fraction $1 /\left[\frac{1}{2}\left(p_{1}, \ldots ; \mathrm{N}_{1}, \ldots ; \mathrm{V}, \mathrm{C} ; \ldots\right)\right]$ to survive to the next generation.

$$
n_{i}^{\prime}=\frac{B+V(1-P)+(V-C P) p_{i}}{f\left(p_{1}, \ldots ; N_{1}, \ldots ; V, C ; \ldots\right)} n_{i} \quad \text { with } \quad \mathbf{P}:=\sum p_{p_{i}} / \sum n_{i}
$$

Fitness:

$$
\begin{aligned}
\mathrm{s}_{\mathrm{p}}(\mathrm{q})= & \left\langle\ln \left[\frac{\mathrm{B}+\mathrm{V}(1-\mathrm{p})+(\mathrm{V}-\mathrm{Cp}) \mathrm{q}}{\mathrm{f}(\mathrm{p} ; \mathrm{N}(\mathrm{t}) ; \mathrm{V}, \mathrm{C} ; \ldots)}\right]\right\rangle_{\mathrm{t}}= \\
& \ln [\mathrm{B}+\mathrm{V}(1-\mathrm{p})+(\mathrm{V}-\mathrm{Cp}) \mathrm{q}]-\langle\ln [\mathrm{f}(\mathrm{p} ; \mathrm{N}(\mathrm{t}) ; \mathrm{V}, \mathrm{C} ; \ldots)]\rangle_{\mathrm{t}} \\
\mathrm{~S}_{\mathrm{p}}(\mathrm{p})= & \ln [\mathrm{B}+\mathrm{V}(1-\mathrm{p})+(\mathrm{V}-\mathrm{Cp}) \mathrm{p}]-\langle\ln [\mathrm{f}(\mathrm{p} ; \mathrm{N}(\mathrm{t}) ; \mathrm{V}, \mathrm{C} ; \ldots)]\rangle_{\mathrm{t}}= \\
& \ln \left[\mathrm{B}+\mathrm{V}-\mathrm{C} \mathrm{p}^{2}\right]-\langle\ln [\mathrm{f}(\mathrm{p} ; \mathrm{N}(\mathrm{t}) ; \mathrm{V}, \mathrm{C} ; \ldots)]\rangle_{\mathrm{t}}=0 .
\end{aligned}
$$

$$
s_{p}(q)=\ln \frac{B+V(1-p)+(V-C p) q}{B+V-C p^{2}}
$$

Special case: Evolutionary Game Theory:

Example: Hawk - Dove

	H	D
H	$\frac{1}{2}(V-C)$	V
D	0	$\frac{1}{2} V$

$$
n_{i}=\frac{B+V(1-P)+(V-C P) p_{i}}{f\left(p_{1}, \ldots ; N_{1}, \ldots ; V, C ; \ldots\right)} \quad \text { with } \quad \mathbf{P}:=\sum p_{i} n_{i} / \sum n_{i} .
$$

$$
s_{p}(q)=\ln \frac{B+V(1-p)+(V-C p) q}{B+V-C p^{2}}:
$$

"Generic" Evolutionary Game Theory:

Hawk- Dove with between generation fluctuations in the pay-off

	H	D
H	$\frac{1}{2}(\underline{\mathbf{V}}-\mathrm{C})$	$\underline{\mathbf{V}}$
D	0	$\frac{1}{2} \underline{\mathbf{V}}$

$$
\begin{gathered}
\underline{n}_{i^{\prime}}=\frac{B+\underline{V}(1-\underline{\mathbf{P}})+(\underline{\mathbf{V}-C} \underline{\mathbf{P}}) p_{i}}{f\left(p_{1}, \ldots ; \underline{n_{1}}, \ldots ; \underline{\mathbf{V}}, \underline{C} ; \ldots\right)} \underline{n}_{i} \text { with } \underline{\mathbf{P}}:=\sum p_{p_{i} n_{i}} / \sum \underline{n}_{i} \\
s_{p}(q)=\mathbf{E} \ln \frac{B+\underline{\mathbf{V}}(1-p)+(\underline{\mathbf{V}-C p}): q}{B+\underline{\mathbf{V}}-C p^{2}}
\end{gathered}
$$

Unfolding the Degeneracy of
 Evolutionary Game Theory

Higher Dimensional Trait Spaces

Two examples (from quantitative genetics, with a fixed shape of the fitness landscape) showing
that the domain of attraction of an adaptive peak will depend on the covariance matrix:

differences in evolutionary time scales due to an almost degenerate covariance matrix:

When the shape of the fitness landscape depends on the resident trait values, even the attractivity of a singular point may depend on the mutational/ genetic covariance matrix.

Some matrix facts

A matrix is called symmetric if $A^{\top}=A$, where $A^{\top}=\left(\mathrm{a}_{\mathrm{ij}}\right)^{\top}=\left(\mathrm{a}_{\mathrm{jj}}\right)$ [the "transpose" of A].
Every square matrix can be decomposed into

$$
\begin{array}{ll}
\frac{1}{2}\left(A+A^{\top}\right) & \text { the symmetric part } \\
\frac{1}{2}\left(A-A^{\top}\right) & \text { the antisymmetric part }
\end{array}
$$

A symmetric matrix A is called positive [nonnegative] definite, written as $A>0 \quad[A \geq 0]$, if for all $X \neq 0$

$$
X^{\top} A X>0 \quad\left[X^{\top} A X \geq 0\right]
$$

Covariance matrices are symmetric, as are (nonmixed) second derivatives of functions from vectors to scalars. Covariance matrices are moreover nonnegative definite.

For general matrices A one can only conclude from

$$
X^{\top} A X=0 \quad \text { for all } X
$$

that the symmetric part of A equals 0 .

Some matrix facts II

For any quadratic form

$$
\begin{equation*}
\left(X-X_{0}\right)^{\top} A\left(X-X_{0}\right) \tag{1}
\end{equation*}
$$

with $\operatorname{dim} X=n$ there exists a linear transformation of coordinates such that this form can be written as

$$
\left(X-X_{1}\right)^{\top}\left[\begin{array}{ccc}
I_{h} & 0 & 0 \tag{2}\\
0 & 0 & 0 \\
0 & 0 & -I_{k}
\end{array}\right]\left(X-X_{1}\right)
$$

$h+k \leq n$, with I_{m} the $m \times m$ identity matrix.
When $h=n$ or $k=n$ (A positve rep. negative definite), the level surfaces of (1) are elipsoids, and those of (2) are spheres.

Some results for higher dimensional trait spaces 2:

- Near a singular point X*:
- The set of potential invaders into a given resident X is bounded by a quadratic surface, [in ${ }^{2}$ an ellipse or a pair of hyperbolas].
- The family of those sets, when X varies over a neighbourhood of X^{*}, is selfsimilar under uniform expansion:

- X^{*} is a local ESS (i.e., cannot be invaded by any nearby strategy
Y) iff

$$
C:=\left.\frac{\partial^{2} S_{X}(Y)}{\partial Y^{2}}\right|_{Y=X=X^{*}} \quad \text { is negative definite. }
$$

- Convergence to an ESS is assured, whatever the mutational covariance matrix, iff
$A:=\left.\frac{\partial^{2} S_{X}(Y)}{\partial X^{2}}\right|_{Y=X=X^{*}}-\left.\frac{\partial^{2} s_{X}(Y)}{\partial Y^{2}}\right|_{Y=X=X^{*}}$ is positive definite.
(Olof Leimar, in press)
- No mutual invasibility iff
$B:=\left.\frac{\partial^{2} s_{X}(Y)}{\partial X^{2}}\right|_{Y=X=X^{*}}+\left.\frac{\partial^{2} s_{X}(Y)}{\partial Y^{2}}\right|_{Y=X=X^{*}}$ is negative definite.
- $A>0 \& B>0 \Rightarrow C<0$
as in the one-dimensional case.

Normal form

of the dimorphic s-function at a monomorphic singular point for vector traits

Let X^{*} be a singular point and let

$$
X_{1}=X^{*}+\varepsilon U_{1}, X 2=X^{*}+\varepsilon U_{2}, Y=X^{*}+\varepsilon V,
$$

and let

$$
\overline{\mathrm{U}}=\frac{1}{2}\left(\mathrm{U}_{1}+\mathrm{U}_{2}\right), \quad \Delta=\frac{1}{2}\left(\mathrm{U}_{1}-\mathrm{U}_{2}\right),
$$

then
$\mathrm{S}_{\mathrm{X}_{1} \mathrm{X}_{2}}(\mathrm{Y})=\varepsilon^{2}\left\{\bar{U}^{\mathrm{T}} \mathrm{C}_{11} \bar{U}-\Delta^{\mathrm{T}} \mathrm{C}_{00} \Delta+\right.$

$$
2\left[\bar{U}^{\top} \mathrm{C}_{10} \mathrm{~V}+\frac{\mathrm{U}^{\top}\left(\mathrm{C}_{00}-\mathrm{C}_{11}+\mathrm{C}_{10}-\mathrm{C}_{01}\right) \Delta}{\Delta^{\top}\left(\mathrm{C}_{00}+\mathrm{C}_{11}\right) \Delta} \Delta^{\top} \mathrm{C}_{10}(\mathrm{~V}-\overline{\mathrm{U}})\right]+
$$

$$
\left.\mathrm{V}^{\top} \mathrm{C}_{00} \mathrm{~V}\right\} \quad \text { +h.o.t }
$$

with

$$
C_{01}=C_{10}^{\top} \quad \text { and } \quad C_{11} \text { and } C_{00} \text { symmetric }
$$

and

$$
\mathrm{C}_{11}+\mathrm{C}_{01}+\mathrm{C}_{10}+\mathrm{C}_{00}=0 .
$$

Some results for higher dimensional trait spaces 3:

- The number of types that can coexist around a monomorphic singular point is bounded from above by $\operatorname{dim}[\mathrm{X}]+1$. (Freddy Bugge Christiansen \& Volker Loeschcke, 1987)
- Near a singular point the sets of potential invaders into k-tuples $\left(\mathrm{X}_{1}, . ., \mathrm{X}_{\mathrm{k}}\right), 1<\mathrm{k} \leq \operatorname{dim}[\mathrm{X}]+1$, are of the same form, bounded by the same quadratic surfaces (up to as scaling factor), independent of k or the choice of the $X_{1}, . ., X_{k}$:

- The number of branches that can coexist and diverge is in principle equal to the number of positive eigenvalues of

$$
C:=\left.\frac{\partial^{2} S_{X}(Y)}{\partial Y^{2}}\right|_{Y=X=X^{*}}
$$

However in practice usually only 2 branches get started, and there are indications that if more get started, usually only 2 remain.

Splitting in three has only been observed in the rotationally symmetric case (where the symmetry holds in the coordinate system where the covariance matrix becomes the identity matrix)

2D resource competition model
(Andras Vukics, J anos Asboth \& Geza Meszena)

