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Is Adaptive Dynamics
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a contribution for further discussion
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          Models are (families of) mathematical structures
                    together with an interpretation rule.

                                                                 Theories are  either
rules for constructing models (in the sciences),  or
frameworks dealing with many different models of similar type
in one go (in mathematics).

         Adaptive Dynamics belongs to the latter class.

The reason to go axiomatic is to delineate classes of problems
that keep recurring.

The interpretation rules for AD models are in terms of underlying
community models.

The interpretation rules for community models can be decomposed
in a step to some underlying individual-based stochastic model,
and from there to reality.

These considerations serve as guidelines for a proper choice of
definitions and axioms.



Adaptive Dynamics  aims  at making
the transition to macro-evolution,

but concentrates on
only one component of

the evolutionary mechanism:

the filtering of novel mutations
by the ecology

The modern synthesis has only shown
that

micro-evolutionary mechanisms
and

macro-ecolutionary patterns

are compatible.

 It did not add flesh and blood to the
connection.

z Fitnesses are not given quantities, but depend
(1) the traits of the individuals,
(2) the environment in which they live.

z The ecological feedback loop sets the  fitnesses
of all resident types equal to zero.

z Evolutionary progress is largely determined
by the signs and sizes of the  fitnesses

 of potential mutants.

z The fitness of a given type
in a given stationary environment
can be defined as
the      exponential growth rate
of a                       clone of individuals
of that type  in that environment.

Note that as fitness is measured here
on a logarithmic scale, zero is neutral.

average)
(hypothetical)

z For mutants the environment is set by the
population dynamics of the resident types.

    (asymptotic,

corollaries:

Credo:



2. The Population Dynamical Basis

Evolution proceeds through uphill movements
in a fitness landscape that keeps changing so as to
keep the fitness of the resident types  at exactly zero.
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1. the  physical space  in which the
  organisms live

2. the  state space  of their
 i(ndividual)-dynamics

3. the  state space  of their
 p(opulation)-dynamics

4. the  abstract space  of
    influences which they undergo,
 (the fluctuations in light, temperature
 food, enemies, conspecifics):
 their ‘environment’

5. the  ‘trait space’  in which their
 evolution takes place
 (=  parameter space  of their i- and
 therefore of their p-dynamics):
 the 'state space' of their
 adaptive dynamics

6. the  parameter spaces  of
 simple families of
 adaptive dynamics

 Levels of Abstraction
illustrated by the spaces  that  play
a role in adaptive dynamics theory:



z Fitnesses are not given quantities, but depend
(1) the traits of the individuals,
(2) the environment in which they live.

z The ecological feedback loop sets the  fitnesses
of all resident types equal to zero.

z Evolutionary progress is largely determined
by the signs and sizes of the  fitnesses

 of potential mutants.

z The fitness of a given type
in a given stationary environment
can be defined as
the      exponential growth rate
of a                       clone of individuals
of that type  in that environment.

Note that as fitness is measured here
on a logarithmic scale, zero is neutral.

average)
(hypothetical)

z For mutants the environment is set by the
population dynamics of the resident types.

    (asymptotic,

corollaries:

Credo:

sX(Y) :=  ρ(Eattr(X),Y)

ρ(E,Y)

Eattr(X)

Simplifying assumptions

1. mutation limited evolution  1,2)

2. good local mixing  2)

3. clonal reproduction  2)

4. largish system sizes,

5. "good" c-attractors

6. interior c-attractors unique  3)

7. smoothness of  sX(Y)  3)

8. small mutational steps  3)

1)   i.e. separated population dynamical
 and mutational time scales
2)   can often be relaxed !
3)   only made on some occasions

( often  = often.....sometimes ?
  some = some.....most     ? )
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adaptive dynamics
limit

individual-oriented
simulation

large number
limit

t

1

Xi →Xi+Y,  Y=Xi            at rate    1-ε
Xi →Xi+Y,  Y∈(y,y+dy)  at rate    ε p(y-X)dy

Xi →       ,                      at rate    Σ a(Xj,Xi)/[Ωk(Xi)]
j

X →   Y   , Y∈(y,y+dy)  at rate   Ωn(X) ε p(y-X)dy Qx(y) [1- H(sy(x))]
X →(X,Y), Y∈(y,y+dy)  at rate   Ωn(X) ε p(y-X)dy Qx(y)  H(sy(x))

_
_

3    adaptive dynamics:  let      and
         rescale time to on average one mutated birth per time unit

2   "classical" deterministic limit:                                                    ,
        and let  

1    Individual-oriented model ("the ecological basis"):

On the individual-based justification of  Adaptive Dynamics

n(x)dx=#[individualsinA]
AΩA

∫

dX
dt

= α ε (X)
∂sX(Y)

∂Y Y=X

T

C1
2

3a   canonical equation:  subsequently let Varp and
         rescale time to keep the directional movement in view

nΩ with  α  = 2 Tf/ (Ts σ2)



3. Directional Adaptive Dynamics

Adaptive Dynamics: I the monomorphic case
X: trait value of resident

Environment Y: trait value of mutant

sX(Y) :=  ρ(Eattr(X),Y)

fitness (rate of exponential growth in numbers) of mutant:

*   Y has a positive probability to invade into an X community
     if and only if  sX(Y) > 0.

And after that:
*   X  can be ousted by  Y  only if  sY(X) ≤ 0.

Starting from a single individual:

In an ergodic environment:
a population  starting from a single individual
either goes extinct,  with probability 1-Q,
or "grows exponentially" at a relative rate ρ(E).

time
1
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back to the deterministic theory

graphical representation for 1-dimensinal trait spaces:
Pairwise Invasibility Plots

resident c-state space

Interpretation:

In the community model we linearise around an attractor in the
Nmut = 0 boundary:

resident c-state spaceresident c-state spaceresident c-state spaceresident c-state space

invader
p-state
space

Nmut(t+1)
Nres(t+1)-Nres(t+1)^ ≈ Nmut(t)

Nres(t)-Nres(t)
^

Amut 0
something something

(Eres(t))

"transversal"
  Lyapunov
  exponents

tells local behaviour of trajectories in pure resident community

tells local behaviour of mutant trajectories

y

x0

+

+

example 1 example 2

+

+

x0

sx(y) >0:     y-mutant   can invade in  x-population

sx(y) <0:     y-mutant  disappears  from   x-population

for  univariate  (one-dimensional) traits  the direction of evolution

sx(X)  =  0

example 3

x x1 x2 x3

y y

x x



Substitution resident by mutant I:

If sX(Y) > 0 and sY(X) < 0,

and nothing untowards happens in the
interior of the c-state space,

the duration of a substitution

is essentially determined by
the initial and final exponential phases

and therefore by sX(Y) and sY(X).

Example: Gene substitution in Nicholson's blowflies

1

0
3 4 5 6 7

p

sX(Y) t

Substitution resident by mutant II:
Let X not be a c-dynamical bifurcation point,
nor close to an evolutionarily singular point.

Moreover let ε = |Y-X|  be sufficiently small.

Invasion of a "good" c-attractor of  X leads
to a substitution such that this c-attractor
is "inherited" by Y, and

         sY(X) = - sX(Y)    up to O(ε2).

When an equilibrium point or a limit cycle
is invaded, the relative frequency p of Y
satisfies

    =  sX(Y) p(1-p)  up to O(ε2),

(the classical equation for gene frequency change)

[note that sX(Y) = O(ε)],
while the convergence of the dynamics of
the total population densities occurs O(1).

dp
dt

*

*



Problems with E determined by an attractor:

For bounded deterministic c-dynamics perturbed by the smallest
possible  amount  of  noise  convergence to  (so-called ep-chain)
attractors is guaranteed.
However, these attractors do not always give an ergodic E.

What is needed is a dense orbit.
Moreover, in chaotic attractors there are other, periodic,
orbits, along which one gets different E's and therefore
different ρ's:  (tranversal) Lyapunov spectrum.

The ρ associated with the dense orbit is called natural.
This is the only  ρ that persists with (a little) noise.

0

x *

x0

+

+

x *

x*  is  a  singular point  iff

dy
dsx(y)   = 0

y=x=x*
(x* is an extremum in the y-direction)

x *

x *

+

+



4. Beyond the directional mode: Stepping to Dimorphism

Dimorphisms I:

Let X not be a c-dynamical bifurcation point.

Moreover let ε = |Y-X|  be sufficiently small,

and let     sX(Y) > 0 and sY(X) > 0

(⇒ X is close to an evolutionarily singular point)

and let the monomorphic c-attractors of X and Y
be "good"

Then an invasion of X by Y leads to a

       "genetically protected" dimorphism

y

x0

+

+

example 1 example 2

+

+

x0

sx(y) >0:     y-mutant   can invade in  x-population

sx(y) <0:     y-mutant  disappears  from   x-population

for  univariate  (one-dimensional) traits  the direction of evolution
                          is determined by sign sx(y)

sx(X)  =  0

example 3

x x1 x2 x3

y y

x x

? ? ? ?

substitution boundary

±±

protection boundary



when internal c-attractors are always unique
(slightly weaker: when dimorhisms are allways protected):

the purple set supports dimorphisms

Mutual invasability: also consider "role reversal" of x and y

x1 can invade x2-population

y

x2

x1

y

but not vice versa
x2 can invade x1-population
but not vice versa

y

x cannot invade y

x1 can invade x2-population
and vice versa

x can invade y-population

=

y cannot invade x

y can invade x-population

+

+

+
+

+
+

+

+ +

+

x1

x2 x2

Dimorphisms II:

In general, sX(Y) > 0 and sY(X) > 0 does not guarantee
that invasion of X by Y leads to coexistence.

Example:

Consider the following recurrences
for two mutualistic populations

n'  = R0
2 + km + (n-1)

-1

n   for 0 ≤  n < 1
 = 0        for 1 ≤  n

m' = R0
2 + kn + (m-1)

-1

m   for 0 ≤  m < 1
 = 0        for 1 ≤  m,

00

1

1

single species
recurrence:

00

1

1

an  extinction  in

next

step

These equations may look pretty artificial,
but they have all the mathematical properties
required of a good population model

*

*



Adaptive Dynamics, II polymorphisms:

asymptotic  average  rate  of relative  increase
(≡ dominant Lyapunov exponent) of Y population
in  a  given   ergodic   environment  E

ρ(E,Y):

the  environment  "created"  by  a  strategy
coalition   C = (X1,…, Xn)

Eattr(C):

(fitness)(fitness)

locally largishIn  (spatially and/or physiologically structured)  locally largish
populations  characterized by trait values  (≡ strategies)  Y, X,
X1,…, Xn:

unique global attractor

sC(Y) :=  ρ(Eattr(C),Y)

consider local theory only

Implicit presupposition: An  X1,…, Xn  (plus...)  community has
a unique global attractor (stationary probability measure on E)
with all n strategies present [or else consider local theory only]

fitness of mutant = sx  ,x  (y)
1 2

Invasion in a dimorphic population:

two residents: x1, x2;     one mutant: y

or

succesful mutation of x1

or

succesful mutation of x2

X2

X1

:

:



classifying the evolutionarily singular points

∂2sx(y)
∂y2   y=x=x0

∂2sx(y)
∂x2   y=x=x0

x0 uninvadablex0 uninvadable

yesyes

nono

dimorphic
convergence
from x0

yes

no

evolutionary
"branching"
evolutionary
"branching"

Evolutionary AttractorsEvolutionary Attractors

Evolutionary RepellersEvolutionary Repellers

dimorphic
convergence
from x0

yes

no

∂2sx(y)
∂x2   y=x=x0

∂2sx(y)
∂y2   y=x=x0

no
yesmonomorphic

convergence
to x0

no
yesmonomorphic

convergence
to x0

no
yesmonomorphic

convergence
to x0



❚ One of the main results from AD is the discovery
of a near ubiquitous potential mechanism for
adaptive speciation.

trait value
x



adding Mendelian genetics:

Summary
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Ecological Character

Simulation

Dieckmann & Doebeli considered a few ways of achieving
assortative mating.
What about other ways?
In particular, which ones are easiest to realise?
(Spatial structure can help!)

There are more ways of achieving a split in the types around
than thwarting the Mendelian mixer,   like
using a developmental switch to produce different types, and
letting the types so produced evolve by means of modifier genes.
Possible switches:
(a) a single locus with a dominant-recessive allele pair,
(b) sex (a special case of 1; disadvantage:  there are other
     selective pressures to let the types occur in special ratios).
(c) some incidental environmental cue.

1.

2.



4. Polymorphisms / More than Two Species

More Species Coevolution:

What are the regularities?

(cf. talk by Vincent Jansen)

We need to put in more ecological constraints,
or else ........

1 2

3

1 2

3

4

3

1

2

1 2

3

4
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1 2
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5. And beyond: Higher Dimensional Traits, Bifurcations

message: the canonical equation is now our main tool

in higher dimensional trait spaces
at higher degrees of polymorfism sX(Y) is no longer differentiable

near the lower dimensional singular points:

To first order of approximation for small mutational steps:

where   ε   is  the probability of a mutation per birth event,

C  is  the mutational  covariance matrix,
and  α  depends  i.a.  on the reproductive variability.

dX
dt

= α ε N(X)
∂sX(Y)

∂Y Y=X

T

C

When everybody is born equal & the community attractor is just a point:

                                   α = 2 Tf/ (Ts σ2)
Tf  = average age of giving birth,     Ts = average lifetime

σ2 = Var[lifetime offspring number] .

1
2

(of resident)

n1 →

n1 →
^

↑
n2
^

↑
n2

A

B

B

A

community state space parameter space

parameter paths attractor paths

A

B

A

B



starting with speciation

2 1

1

2

z In the fossil record we probably
see mainly the slow tracking of
adaptive equilibria, punctuated
by phases of fast evolution
when the equilibrium structure
bifurcates. 



z In the fossil record we probably
see mainly the slow tracking of
adaptive equilibria, punctuated
by phases of fast evolution
when the equilibrium structure
bifurcates. 

“just so”

+

+



more bifurcations

Global constraints on the  isoclines:

x1

x2

x1

y
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Seed size 1

From a model for the evolution of seed sizes



6. Future

            Open problems in AD:

Internal:
* hard proofs
* range of applicability of local results
* fully classifying local behaviour
  for higher dimensional trait spaces
* developing a full-fledged bifurcation
  theory (including good computational tools)
* classifying generic properties

Population dynamical justification:
* hard proofs of stochastic limit theorems
* elucidating generic behaviour of community models
  on those points relevant for AD

Genetic considerations:
* what survives under Mendelian inheritance?
* when do the assumed smoothness
   properties (i.a. similarity of mutational
   and ecological metrics), apply,
   and how to proceed if they don't?

Applications:
* analysing specific eco-evolutionary models
* predicting generic macro-evolutionary patterns
* improving the connection with real biology
   and the argumentation style of "real" biologists



7. Afterthougthts 1: Why small mutational steps?

z Both functional morphologists and developmental biologists
talk in terms of mechanisms that keep working properly
through a sequence of small transformational steps.

z Only properly functioning organisms
have fitnesses in a relevant range,
malfunctioning ones have  fitnesses near – .

z This leads to a picture of narrow, slightly sloping, ridges,
surrounded by a fitness abyss.

z The trait spaces considered by morphologists and
evo-devo-researchers are, at least in principle,
very high dimensional.

For an n-dimensional  trait space

the top of a fitness ridge can easily have

a dimension  k > 1

while away from the ridge fitness decreases

in an  (n-k)-dimensional  set of directions
.

NB

z Internal selection processes
Officially: selection processes occurring so early in life
that they are largely independent of the ecological
feedback loop.

    In our case: such that their effect on the fitness
landscape is always the same.

z The slope of the ridges is the domain of ecology,
their location is largely ecology independent.

The ratio of the size of  the intersection of two spheres
with constant radii and
the distance of their centers equal to the largest radius,
to  the size of the smallest sphere  rapidly decreases
when the number of dimensions increases.

To offset this effect one has to let the size of the
smaller sphere go to zero.

1 dimensional spheres: 2 dimensional
spheres:



2 Afterthoughts 2: Beyond Adaptive Dynamics

about trait spaces:

some further long-term considerations

So far the implicit assumption was that the trait space
has an ‘ordinary’, i.e.,  manifoldlike , geometry.

This need not be the case, as the geometry should
reflect everything that can be generated by the
developmental system.

evolution tinkers (Jacob):

z The properties realised during evolution can often be
realised by very different mechanisms.

z The first mechanism that does a sufficient job inherits the
earth.
Considering which mechanisms should be easiest to
realise has considerable predictive power.

z Evolution does not necessarily solve a problem in the
best possible manner.

z Evolution optimises only under very special
circumstances, and only very locally.

z In the longer term different mechanisms for solving a
problem lead to different mutational  covariances and
hence to different evolutionary routes.



The real evolutionary state space is not phenotype
space  but genotype space .

The mutational  covariances  reflect
    the geometry of genotype space

(mutational distances)   as well as the genotype to
phenotype map .
This reflection is only adequate locally  in genotype
space, and therefore locally  in evolutionary time.

Presently
the detailed  nitty -gritty at the molecular

level does not help yet in

developing a predictive framework

for dealing with large-scale evolution.

The reason is
the evolved complexity of the developmental processes

and the resulting
convolutedness  of the genotype to phenotype

map.

There is a need for intermediate
abstractions.

z There is a discrepancy between the good job done by
random models at the level of molecular evolution
versus the domination of adaptive processes perceived
by ecologists, functional morphologists, and the like.

z This discrepancy nicely fits with the assumption of a
great convolutedness of the genotype to genotype map.

z The exceptions to the random model also fit in nicely:
y Different pieces of the genome evolve at different speeds, which tie

in with the function a few translation steps away, but not further.
y The variance in the number of substitutions is much too high. This

presumably reflects repeated selective sweeps.

some arguments:



on  adaptive walks in genotype space:

Addendum: Topics in Adaptive Dynamics s.l. that presently presently have my interest

1. Development of the mathematical framework: Finding canonical forms of the invasion fitness
function for higher degrees of polymorphism locally near evolutionarily singular points for higher
dimensional trait spaces. Result: Up to quadratic terms the algebraic form derived on the basis of
Lotka-Volterra population models is universal,or, equivalently, the monomorphic invasion fitness
locally fully determines the polymorphic invasion fitnesses in a manner that does not depend on
the underlying ecological model.

2. Ecological justification: Heuristically justifying the AD framewwork for physiologically
structured  (PS) population models, and more in particular the derivation of procedures for
calculating the various quantities like invasion fitnesses and coefficients of the canonical equation
for such models. Results: (a) For PS population models the canonical equation looks exactly the
same as for simple ODE population models but for an aditional multiplicative factor that relates to
details of the resident life history, like the variance of the lifetime offspring production. (b) The
result mentioned under 1 applies in full generality for PS population models.

3. Relationship with the Mendelian world (a): Exploring the consequences of male and female life
history differences for measures of invasion fitness for polymorphic Mendelian PS populations. I
do have interesting closed expressions for single locus genetics but I still have to explore their
multi-locus extension, and to see what their consequences are for e.g. life-history evolution and
the like.

4. Relationship with the Mendelian world (b): Exploring the influence of the genetic architecture
on the choice made by Mendelian populations for the solution of ecologically posed branching
problems as defined by AD theory, where the solution may be e.g. speciation, sexual role
differences, random assignment of different types based on external cues, or the gradual
evolutions of single locus dimorphisms with large phenotypic effect.

The very high dimension of genotype space

1. makes that every point has very many neighbours

2. makes that by far the most points in any set
    lie close to the boundary


