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- (physiologically) structured populations

the canonical equation
- derivation for structured populations

~ a single birth state
~ more birth states

a final comment




- Example illustrating the individual-based justification.

*The fitness landscape picture of evolution: it is a seascape!
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1 Individual-oriented model ("the ecological basis"):
Xi = Xi+Y,[|Y=X; atrate |1-c4 : faithful
Xi = Xi+Y,[[YO(y,y+dy)| at rate | ep(y-X)dy }repmduc“on mutated
Xi - at rate Zja(Xj,Xi)/[Qk(Xi)] death
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3 adaptive dynamics: let Q-oo, Qe-0, and
rescale time to on average one mutated birth per time unit

X - Y ,YO(yy+dy) atrate Qn(X)ep(y-X)dy R(y) [1- H(sy(x))]
X - (X,Y), YO(y,y+dy) atrate Qn(X) ep(y-X)dy Bi(y) H(sy(X))

3a canonical equation: subsequently let Varp -0, and
rescale time to keep the directional movement in view

0
ax - 2 a £Qn(X) C SX(Y)

T with a = 2 T¢/ (Ts 02)

Y=X



\ fitness landscape: ,T
*H — N

W=

resident trait value(s) x mutant trait value y

evolutionary time




Physiologically Structured Populations

e Population equilibria: density dependent demography

 Invasion by mutants: classical linear demography




Calculating equilibria for
physiologically structured populations

After Diekmann, Gyllenberg & Metz (2003) Theor Pop Bol 63: 309-338 :

b = L(I)b, | = F(O), O=0G()b
equilibrium environmental input, per capita lifetime
birth rate per l.e., the environment as Impingement on
unit of area perceived by the individuals the environment

next generation operator _popt_JIati_on output,
(i.e.,L; is the lifetime number of births .., Impingement
in statei expected from a newborn in statg) on the environment




l.e., everybody is born equal, but for the inheted traits.

Individuals do not inherit state variables
like fat reserves, or social status




Invasion fithess:

Sk (Y) =1, (1)

with ry(ly) the (unique) solution of/

7\Y(Ix,r) =1

with ~ g
Ay(lx.r)= e “Ay(lx.da)
0

Laplace transform
of birth kernel
(Lotka’s equation,
scalar version)

[i.e., Ay(lx.@) isthe expected number of i
up to age a by a newborn invader].

A the so-called birth kernel of the invader Y in environment |y

nroduced




the
Canonical Equation
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For ODE population models:
Dieckmann & Law (1996) J Math Biol 34: 579-612
Champagnat, Ferriere & Ben Arrous (2001) Selection 2

heuristic derivation for general
Physiologically Structured Populations

If we scale the mutational steps wit®, and time with 51 &small,
so that any relevant part of the path consists of any small steps,
a “law of large number” result comes into play.

(Proofs in Ethier & Kurtz, 1986)




pro capita
birth rate

. AN¢ _(Y=X) P{Yinvadeg} f(Y-X)d(Y-X)

Mutants arrive singly. Therefore we have to account
for the intrinsic stochasticity of the invasion pro@ss.







From the theory of branching processes Il
Let P be probability of invading: P=1-Q.

*

*

Under very general conditions

P>0 ifandonly if r()>0.
For constant andsmall r()>0

(1 P - 2In[Ry()] [/ 02

with 02 a measure for the variability in the life-time
offspring production; when everybody is born equal
02 = Variance [life-time offspring production]

(ii) r() - In[Ry(N]/ Ts

with T the mean age at offspring production.

P-[2T¢[ 02] r()



9(0) = po, 9(1) =1, Ro< 1/
g'(l) = Emz RO1 -7
g"(1) =Em(m-1) =Varm+R’ - R,

with € :=R;-1 = In(Ry) : Q

1-P=1-(l+€)P + %(Varr_n+£ +€%)P? + [h.0.t (<0)]
2€




P(r) = % 1 oo-ae'ra/\(da)
e "\ (da) O
0
@0) = In Ry, ¢(0) =-Ts, with Ts:= aA(da) /R,
0

to first order of approximation:




mean evolutionary step per time unit:

(average) probability probability density
population of mutation of mutation steps
size per birth event l
(average) _l 0 _
pro capita - A (Y = X) P{YInvades} f (Y - X)d(Y - X)
birth rate l —00 l
1 2T,
— r — 1S (Y
Lo 1A s,
\ Sy /

Nt (Y= X) (Y- X)r &=

Y =X)d(Y = X)

N Y=X
N\
X
dX _ < 2Tf 1. ds(V)|
i T.o° 2 Y ly=x






Finitely many different birth states:

(e.g. multiregional models)

The previous results immediately extend to this cas
with appropriate definitions for

0%, T, and T,

(although it was a bit of a hassle to get the foamuight).

For the case of infinitely many birth states the rquired
branching process results have not yet been proven.



NOW the(generally unigque Oloil Q Olka 'S equation

Catrix version)
@nteigenvalueo NAy(lx,r) =1

Ay(Ix.1) = e "8Ay(lx, da)
0)

with A now the birth kernelf the invader Y in environment |y

NAyii(lx.@) 1s the expected numberof invaderdorn in state |

with

produced up to agea by a newborn invader in statej .




* R, the dominant eigenvalue of the next generation opetar
Ly(ly) = Ay(ly,0) of the mutant,

= for T, the quantity T, := v, aly;(lx,da)u;
] 0
with u the right eigenvector normalised to sum to 1 of theext generation
operator Ly(ly) of the resident (its stable birth distribution),

v the corresponding left eigenvector , normalised sihat viu = 1
(the “reproductive values” associated with the diffeent birth states),



with F; the probability that a resident individual born in statej survives till agea,

= for 02 the quantity 0% 1= Varj Vim;; U

] i

with m; the lifetime number of offspring of typei begotten by
a resident individual born in state;.




Finitely many different birth states:

A second application is to periodic environments:

Take the phase (of the oscillation) at which an indidual is born
as Its birth state.

(The proof still has to be worked out in all its goy technical detail.)

NB The idea of a proof works only for discrete timemodels
due to the lack of hard results for continua of bith states.

(UIf Dieckmann has additional heuristic results forsimple ODE community
models that apply to mutant invasion in any type oérgodic attractor.)



To round of: What happens near branching points?

This depends on the local geometrical

structure of the functions (Y).

For one-dimensional trait spaces

we have a full classification of what happens
around any type of “singular point”,

like Evolutionarily Stable Strategies or f)
branching points. .

For higher dimensional trait spaces
we have so far only proved that:
Any model in the class treated in this talk

locally around a singular point
has the same evolutionary properties as some
appropriately chosen so-called (simple!) Lotka-Vokrra model.



\ ) The End

/} (for today)




