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a few words about

- adaptive dynamics

- (physiologically) structured populations

the canonical equation

- derivation for structured populations

~ a single birth state
~ more birth states 

a final comment



Adaptive Dynamics

• Example illustrating the individual-based justification.

•The fitness landscape picture of evolution: it is a seascape!
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On the individual-based justification of  Adaptive Dynamics

Xi →Xi+Y,  Y=Xi            at rate    1-ε
Xi →Xi+Y,  Y∈(y,y+dy)  at rate    ε p(y-X)dy

j

1    Individual-oriented model ("the ecological basis"):

Xi →       ,                      at rate    Σ a(Xj,Xi)/[Ωk(Xi)]

reproduction

death

faithful
mutated

(Individual-based version of a so-called Lotka-Volterra model, with mutation added.)
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On the individual-based justification of  Adaptive Dynamics

X →   Y   , Y∈(y,y+dy)   at rate   Ωn(X) ε p(y-X)dy Qx(y) [1- H(sy(x))]

X →(X,Y), Y∈(y,y+dy)  at rate   Ωn(X) ε p(y-X)dy Qx(y)  H(sy(x))

3    adaptive dynamics:  let  ΩΩΩΩ→→→→∞∞∞∞,,,,    ΩΩΩΩεεεε→→→→0000,,,,            and
         rescale time to on average one mutated birth per time unit

dX
dt

= α ε (X)
∂sX(Y)

∂Y Y=X

T

C1
2

3a   canonical equation:  subsequently let Varp→→→→0000,,,,                    and
         rescale time to keep the directional movement in view

nΩ with  α = 2 Tf/ (Ts σ2)

P
P



The fitness landscape picture of evolution:

Evolution crawls uphill in a fitness landscape 
that keeps changing so as to
keep the fitness of the resident types at exactly zero.
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fitness landscape: sX1
...Xk

(Y)

mutant trait value y



Physiologically  Structured Populations

• Population equilibria: density dependent demography 

• Invasion by mutants: classical linear demography



Calculating equilibria for 
physiologically structured populations

After Diekmann, Gyllenberg & Metz (2003) Theor Pop Biol 63: 309-338 :

b =  L(I)b,                  I =  F(O),                  O =  G(I) b

equilibrium
birth rate per 
unit of area

environmental input,
i.e., the environment as 
perceived by the individuals

per capita lifetime
impingement on
the environment

next generation operator 
(i.e., Lij is the lifetime number of births 
in state i expected from a newborn in statej)

population output,
i.e., impingement
on the environment



Start with the case where b is a scalar

i.e.,  everybody is born equal,  but for the inherited traits.

Individuals do not inherit state variables 
like  fat reserves, or social status



Calculating mutant invasion rates for 
physiologically structured populations

sX (Y) ==== rY (IX )

with rY(IX) the                 solution of

˜ Λ Λ Λ Λ Y (IX ,r) =  1

with
˜ Λ Λ Λ Λ Y (IX ,r) ==== e−−−−raΛΛΛΛY (IX ,da)

0

∞∞∞∞
    

Invasion fitness:

(unique)

Laplace transform
of birth kernel
(Lotka’s equation,
scalar version)

ΛΛΛΛ the so-called birth kernel of the invader   Y  in environment   IX

LY(IX)  =  ΛΛΛΛY(IX,∞)
[i.e.,    ΛΛΛΛY(IX,a)    is the  expected number of  invaders  produced 
up to age   a by a newborn invader].



the

Canonical Equation



To first order of approximation for small mutational steps:

where εεεε is the probability of a mutation per birth event,

C is the mutational covariance matrix,
and αααα depends i.a. on the reproductive variability.

dX
dt

= α ε N(X)
∂sX(Y)

∂Y Y=X

T

C1
2

When the community attractor is just a point:

                                               α = 2 Tf/ (Ts σ2)
Tf  = average age of giving birth,      Ts = average lifetime

σ2 = Var[lifetime offspring number] .
(of resident)



heuristic derivation for general 
Physiologically Structured Populations

For ODE population models:
Dieckmann & Law (1996) J Math Biol 34: 579-612

Champagnat, Ferrière & Ben Arrous (2001) Selection 2

If we scale the mutational steps with δδδδ, and time with δδδδ-1,  δδδδ small, 
so that any relevant part of the path consists of many small steps,    
a “law of large number” result comes into play. 

(Proofs in Ethier & Kurtz, 1986)

In that case all that matters is the mean step size per unit of time.



mean evolutionary step per time unit:

(Y −−−− X) P{Y invades}λλλλ Nεεεε

probability
of mutation
per birth event

(average) 
population 

size

(average) 
pro capita 
birth rate

Mutants arrive singly. Therefore we have to account
for the intrinsic stochasticity of the invasion process.

−∞

∞

 f (Y −−−− X)d(Y −−−− X)

probability density 
of mutation steps



From t he t heory of branching processes:

time
1

10

100

1000

10 200

#  individuals

a population  starting from a single individual
either goes extinct,  with probability Q,
or "grows exponentially" at a relative rate r(y,Ix).

In an ergodic environment:



Let P be probability of invading:   P = 1- Q.

*  Under very general conditions

     P > 0   if and only if   r(I) > 0.

From t he t heory of branching processes II:

*  For constant I and small r(I) > 0

              (i)      P  -  2 ln [ R0(I)]  /  σ2

 with σ2   a measure for the variability in the life-time
 offspring production; when everybody is born equal
    σ2   =  Variance [life-time offspring production]

 (ii)      r(I)  -  ln  [R0(I)] /  Tf

 with Tf the mean age at offspring production.

       P  -  [2 Tf /  σ2 ]   r(I)



Q = pm Qm

m====0

∞∞∞∞
    ==== g(Q) with g(x) : ==== pmxm

m====0

∞∞∞∞
    

Q

R0 < 1

R0 > 1

g(0) ==== p0, g(1) ==== 1,

′ ′ ′ ′ g (1) ==== Em ==== R0,

1− P = 1 − (1+ ε)P + 1
2

(Varm + ε + ε2)P2 + [h.o.t (<0)]

with   εεεε := R0 - 1 ≈ ln(R0) :

P =
2ε

Var m
+ h.o.t.    

′ ′ ′ ′ ′ ′ ′ ′ g (1) ==== Em(m −−−− 1) ==== Var m ++++ R0
2 −−−− R0

lifetime number of kids

g



˜ Λ Λ Λ Λ (r ) : ==== e−−−−raΛΛΛΛ(da)
0

∞∞∞∞
    ==== 1

characteristic equation:

take logarithms:
φφφφ(r ) : ==== ln ˜ Λ Λ Λ Λ (r ) ==== 0

′ ′ ′ ′ φ φ φ φ (r) ==== 1

e-raΛΛΛΛ(da)
0

∞∞∞∞
    

-ae-raΛΛΛΛ(da)
0

∞∞∞∞
    

φφφφ(0) ==== ln R0, ′ ′ ′ ′ φ φ φ φ (0) ==== −−−− Tf , with Tf :==== aΛΛΛΛ(da)
0

∞∞∞∞
    

to first order of approximation:

ln R0 −−−− r Tf ++++ h.o.t ==== 0     r ====
ln R0
Tf

++++ h.o.t

/R0



mean evolutionary step per time unit:

(Y −−−− X) f (Y −−−− X)d(Y −−−− X)

2Tf

σσσσ2 rY(IX )[[[[ ]]]]++++
1
Ts

====
2Tf

σσσσ2 sX (Y)[[[[ ]]]]++++

λλλλ Nεεεε

N ε
2Tf

Tsσ
2 (Y − X) (Y − X)T ∂sX (Y )

∂Y Y = X

   

   
   

   

   
   

T   

   
   

   

   
   

−∞

∞

 
+

f (Y − X)d(Y − X)

−∞

∞

 

probability
of mutation
per birth event

(average) 
population 

size

(average) 
pro capita 
birth rate

probability density 
of mutation steps

N εεεε
2Tf

Tsσσσσ
2

1

2
C(X)

∂∂∂∂sY (Y)
∂∂∂∂Y Y====X

            

            
            

            

            
            
TdX

dt
====

P{Y invades}



For ODE population models:

σσσσ2 = 2              Tf = Ts

2Tf

Tsσσσσ
2 ==== 1

    



Finitely many different birth states: 

(e.g. multiregional models)

The previous results immediately extend to this case
with appropriate definitions for

σσσσ2 , Tf , and  Ts

(although it was a bit of a hassle to get the formulas right!).

For the case of infinitely many birth states the required 
branching process results have not yet been proven.



sX (Y) is now the                                 solution of

dominant eigenvalue of =  1

with

with  ΛΛΛΛ now the birth kernel matrix of the invader Y in environment IX

(generally unique)

Laplace transform
of birth kernel
(Lotka’s equation
matrix version)

˜ Λ Λ Λ Λ Y (IX ,r) ==== e−−−−raΛΛΛΛY (IX ,da)
0

∞∞∞∞
    

˜ Λ Λ Λ Λ Y (IX ,r)

ΛΛΛΛY,ij(IX,a)     is     the  expected  number of   invaders   born  in  state  i

produced  up  to  age   a by  a  newborn  invader   in  state j . 

As before LY(IX) = ΛΛΛΛY(IX,∞).

Finitely many different birth states: 



Take for

R0 the dominant eigenvalue of the next generation operator
LY(IX)  =  ΛΛΛΛY(IX,∞) of the mutant,

*

Tf : ==== v i

0

∞∞∞∞

    aΛΛΛΛY ,ij ( IX , da)
i , j
    u jfor Tf the quantity

with u the right eigenvector normalised to sum to 1 of the next generation 
operator  LY(IX)  of the resident   (its stable birth distribution),

v the corresponding left eigenvector , normalised so that vTu = 1 
(the “reproductive values” associated with the different birth states),

*

Finitely many different birth states: 



  
Ts : ====

0

∞∞∞∞
    −−−− aFj (da)

j
    u jfor Ts the quantity

with Fj the probability that a resident individual born in state j survives till age a,

*

for σσσσ2 the quantity* σσσσ2 : ==== Var j vimij
i
    

            

            
            

            

            
            

j
    u j

with  mij the lifetime number of offspring of type i begotten by 
a resident individual born in statej.

Finitely many different birth states: 



Finitely many different birth states: 

A second application is to periodic environments:

Take the phase (of the oscillation) at which an individual is born 
as its birth state.

(The proof still has to be worked out in all its gory technical detail.)

NB The idea of a proof works only for discrete time models 
due to the lack of hard results for continua of birth states.

(Ulf Dieckmann has additional heuristic results for simple ODE community 
models that apply to mutant invasion in any type of ergodic attractor.)



To round of:  What happens near branching points? 

This depends on the local geometrical 
structure of the function sX(Y). 

For one-dimensional trait spaces 
we have a full classification of what happens
around any type of  “singular point”,
like Evolutionarily Stable Strategies or 
branching points.

For higher dimensional trait spaces 
we have so far only proved that: 
Any model in the class treated in this talk 
locally around a singular point 
has the same evolutionary properties as some
appropriately chosen so-called (simple!) Lotka-Volterra model.

?



The End

(for today)


