Fisheries-induced Evolution in the Wild

Mikko Heino ${ }^{1,2}$ \& Ulf Dieckmann ${ }^{2}$

${ }^{1}$ Institute of Marine Research, Bergen, Norway
${ }^{2}$ International Institute for Applied Systems Analysis, Laxenburg, Austria

Fishing as an evolutionary force?

Natural history of tile guinwat samon.

A REPORT OF INVESTIGATIONS IN THE SACRAMENTO
RIVER, 1896-190․

By CLOUDSLEY RUTTER,
.Naturalist, United States Fish Commission Stcamer Albatross.
"...a stock-raiser would never think of selling his fine cattle and keeping only the runts to breed from."
"The salmon would certainly deteriorate in size ... if only the smaller ... [are] allowed to breed."

Fishing as an evolutionary force?

- Most fish stocks are heavily impacted fishing mortality > natural mortality
- Survival is a very hard currency in evolution
- Relevant traits have heritable variability
- \Rightarrow Adaptation is inevitable
- ...but is it of significance for fisheries management in short/medium term?

Possible responses

- Life history traits: age and size at maturation, growth rate, reproductive effort
- Behavioural traits: gear avoidance behaviour, risk proneness
- Morphological traits: body shape
- Physiological traits: metabolic rate, growth efficiency

Age \& size at maturation

Theory:

- Increased mortality mostly favours earlier maturation
Observation:
- Earlier maturation is ubiquitous in exploited fish stocks (e.g., Trippel 1995 BioScience)

Competing explanations

1. Evolutionary response
2. Phenotypic plasticity ('compensatory response')
3. Direct demographic response

Until recently is has been difficult to disentangle these non-exclusive explanations

Probabilistic maturation reaction norms

- Probability that an immature individual, depending on its age and size, matures during a given time interval

Size-at-age \sim growth \sim environment

Maturation reaction norm analysis

Maturation reaction norm analysis

Process-oriented description:

- Reaction norm describes the tendency to mature, given age and size
- Variations in demography and growth determine the parts of the reaction norm 'sampled' by the population, but leave the reaction norm itself unaffected
\Rightarrow A trend in the reaction norm suggests evolution

Caveats

- The method tackles with a major source of plastic variation in maturation, but residual environmental effects are bound to remain
- Inferring a cause-effect relationship from observational data always is ambiguous

How to estimate the probabilistic reaction norm? - Method \#1

Logistic regression fitted to a representative sample of immature and newly-matured individuals, sized and aged

Incomplete data

Representative data only on mature individuals data on immature individuals missing
Solution: reconstruct missing data

\checkmark Barents Sea cod

\checkmark Norwegian herring

How to estimate the probabilistic reaction norm? - Method \#2

Representative data on immature and mature individuals, but newly-matured individuals cannot be identified
\checkmark Almost all fish

Estimation based on age- and sizebased maturity ogives

Ordinary age-based maturity ogive:

$$
\begin{aligned}
& o(a)=o(a-1)+(1-o(a-1)) m(a) \\
& \Leftrightarrow m(a)=\frac{o(a)-o(a-1)}{1-o(a-1)}
\end{aligned}
$$

where $o(a)$ is ogive (proportion of mature at age), a is age, s is size, and $m(a)$ is probability of maturing

The formula can be extended to account for age and size:

$$
m(a, s)=\frac{o(a, s)-o(a-1, s-\delta s)}{1-o(a-1, s-\delta s)}
$$

where δs is annual growth increment, and $m(a, s)$ is the reaction norm!
[more simplifying assumptions]

How to estimate the probabilistic reaction norm? - Method \#3

Repeated observations on single individuals
\checkmark Practical with e.g. salmonids, experiments

Species	Population or stock	Period with data	Trend towards earlier maturation	Reference
Atlantic cod	Northeast Arctic	1932-1998	Yes	Heino et al. 2002c
	Georges Bank	1970-1998	Yes	Barot et al. 2004b
	Gulf of Maine	1970-1998	Yes	
	Northern (2J3KL)	$\begin{aligned} & (1977-) \\ & 1981-2002 \end{aligned}$	Yes	Olsen et al. 2004
	Southern Grand Bank (3NO)	1971-2002	Yes	Olsen et al. 2005
	St. Pierre Bank (3Ps)	1972-2002	Yes	
Plaice	North Sea	1957-2001	Yes	Grift et al. 2003
American plaice	Labrador-NE Newfoundland (2J3K)	1973-1999	Yes	Barot et al. 2005
	Grand Bank (3LNO)	1969-2000	Yes	
	St. Pierre Bank (3Ps)	1972-1999	Yes	
Atlantic herring	Norwegian springspawning	1935-2000	Yes, but weak	Engelhard \& Heino 2004
Grayling	Lake Lesjaskogsvatnet, Norway	$\begin{aligned} & \text { 1903-2000 } \\ & \text { (ca. } 15 \text { years) } \end{aligned}$	Yes	Haugen \& Vøllestad, in press

Northeast Arctic cod

Major decline in age \& size at maturation

Demographic change?

1) Total mortality has increased
2) Population dominated by younger cod
\Longrightarrow Lower average age at maturation

Phenotypic plasticity?

1) Growth has accelerated ("compensatory growth")
2) Fast-growing cod mature earlier
3) +2$) \Longrightarrow$ Earlier maturation

Genetic change?

1) Historic harvest regime targeting mostly mature cod \Longrightarrow Genetic selection for delayed maturation
2) Modern harvest only size-selective
\Longrightarrow Genetic selection for earlier maturation

Northeast Arctic cod

Change in length at which probability of maturing is 50% ("midpoint") at age 7

Northeast Arctic cod

Predicted reaction norm midpoints for cohorts 1923-90:

Northeast Arctic cod

Change in the reaction norm midpoints:

Atlantic cod in Canada

Northern cod

Atlantic cod off Newfoundland-Labrador

Age 4 years

Atlantic cod off Newfoundland-Labrador

- The stocks have not recovered, despite 10+ years of severe fishing restrictions
- Is the change in maturation hampering recovery?
\checkmark Large females are superior spawners
\checkmark Possibly faster "recovery" of female than male reaction norms suggests that natural selection for maturation at large size is stronger in females

Norwegian spring-spawning herring
 "the" fisheries collapse of the 60's

Why is herring an outlier?

- Spawner fishery very important - both historically and at present
- Before the collapse also an intensive fishery on juveniles, but before potential maturation age
- Uncertainty on fishing mortality on late immature herring confounds expectations

Do evolutionary changes matter?

Do we have the right to radically modify wild species?

now

Do evolutionary changes matter?

- Reduced sustainable fisheries yield
- Smaller body size of fish in the catch
- Small females produce relatively fewer eggs of lower quality and have a shorter spawning period
\checkmark Disproportionate loss of reproductive capacity
\checkmark Greater vulnerability to unfavourable conditions
\Rightarrow Should be a concern to managers

Can fisheries-induced evolution be managed?

Generic tool that always works:

- Other things being equal, lowering fishing mortality will slow down, and eventually stop, fisheries-induced evolution

Can fisheries-induced evolution

be managed?

Specific tools:

- Exclusively harvesting mature fish favours delayed maturation
- Shifting exploitation from large to small individuals favours fast growth and may favour maturation at large sizes
\checkmark Management tools would need to be evaluated with the help of eco-genetic modes!

Fisheries-induced evolution...

- can be measured
- occurs at contemporary time scales
- is commonplace
- will often reduce the value of fish stocks as renewable resources, and hence needs to be managed

Acknowledgements

Sébastien Barot ${ }^{1}$, Bruno Ernande ${ }^{2}$, Esben M. Olsen ${ }^{3}$ - International Institute for Applied Systems Analysis, Austria
Olav Rune Godø, Georg Engelhard ${ }^{4}$ - Institute of Marine Research, Norway
Adriaan Rijnsdorp, Rob Grift, Sarah Kraak - Netherlands Institute for
Fisheries Research, the Netherlands
Loretta O'Brien - National Marine Fisheries Service, Woodshole, USA
George Lilly, M. Joanne Morgan, John Brattey - Northwest Atlantic
Fisheries Centre, Newfoundland, Canada
Thrond Haugen, University of Oslo, Norway
1 Presently at IRD-LEST, France 2 Presently at IFREMER-MFL, France
3 Presently at University of Oslo, Norway 4 Presently at CEFAS, UK

Photo credits: Norsk Folkemuseum, Oslo, Norway; Thomas de Lange Wenneck, Institute of Marine Research, Bergen, Norway; Esben Moland Olsen, University of Oslo, Norway

