

Risk and adaptation to extreme events

-Bangladesh GGI project-

Georg Pflug, Stefan Hochrainer, Reinhard Mechler RAV

GGI seminar

March 26, 2008

Outline

- Project overview
- Model
- Results
- Issues and discussion

- Exemplary analysis of current and future financial and economic impacts of and adaptation to climate-related extreme events consistent with downscaled IIASA SRES GDP and population change scenarios
- Addresses major questions of disaster risk and climate change research communities:
 - How do the drivers of social/economic and natural systems affect potential extreme event impacts and risks in the future?
 - Climate change versus socio-economic drivers?
 - Scope for adaptation, costs and benefits?
- Bangladesh: most flood-prone country in the world

Risk and Uncertainty

- IPCC AR4, WG II, Ch.2: "Risk management is a useful framework for decisionmaking and its use is expanding rapidly in climate change impact, adaptation and vulnerability assessment"
- Knight: "Risk is measured Uncertainty."
- Degrees of risk and uncertainty:
 - Complete Uncertainty: Outcomes unknown, probabilities unknown
 - 2. Subjective Uncertainty (SRES?) Outcomes known, probabilities unknown
 - **3. Risk: objective uncertainty (our study) Outcomes and probabilities known (within uncertainty ranges)**
 - 4. Certainty

Extreme events and adaptation -planned and public adaptation decision problem-

	Public	Private
Planned	Adaptation to Natural Disasters	
Autonomous		

→ Public sector institutions as key agents, to large extent national-level decision-problem

Figure 4.3: Bangladesh - ADP actual and original budgeted expenditure, 1976/77-1998/99 (real 1995/96 billion

Source: GoB Planning Commission and IMED

Potential vs. actual Annual Development Program spending in Bangladesh

Economic impact

Source: Zenklusen, 2007

Vulnerability and adaptation

Source: Kohler et al. 2004.

Operationalizing vulnerability and adaptation Physical vulnerability

Large scale riverine flood events in Bangladesh

Operationalizing vulnerability and adaptation Financial vulnerability

Based on collaboration in DFID sponsored project on climate risk screening in Bangladesh: ORCHID

- •Institute of Development Studies (IDS), University of Sussex, UK
- •CEGIS Center for Environmental and Geographic Information Services, Bangladesh
- •Bangladesh Institute of Development Studies (BIDS), Bangladesh
- •School of Development Studies-Overseas Development Group, University of East Anglia, UK
- •Tyndall Centre for Climate Research, University of East Anglia, UK
- •International Institute of Applied Systems Analysis (IIASA), Austria
- •Bangladesh Unnayan Parishad (BUP), Bangladesh
- •Bangladesh Centre for Advanced Studies (BCAS), Bangladesh

Module/input data	Source	
Mean temperature change, precipitation and change as function of temperature	PRECIS RCM for A2, B1	
Max. discharge as function of precipitation	Statistical hydrological model	
Flood impacts, Vulnerability	Bangladesh statistics	
Flooded area as function of max discharge	Statistical model	
Exposure	GGI: GDP, Pop, assets	
Losses as function of flooded area	CATSIM extended	
Operationalization of vulnerability	CATSIM extended	
Economic impacts as function of losses	CATSIM	
Risk Management/adaptation	CATSIM	

Modelling: risk framework

IIASA's CATSIM Model Part I: Direct Risk Assessment

Stefan Hochrainer, Reinhard Mechler, Georg Ch. Pflug

Catastrophe Modeling: Including Global and Climate Changes

Macro-economic Risk: Short run 2005-2015

Stefan Hochrainer, Reinhard Mechler, Georg Ch. Pflug

Catastrophe Modeling: Including Global and Climate Changes

Dynamic Direct Risk Assessment

Stefan Hochrainer, Reinhard Mechler, Georg Ch. Pflug Catastrophe Modeling: Including Global and Climate Changes

Climate Change

Precipitation as function of temperature

Location/scale of Discharge distributions

 $\mu_t = 131978 + 1.366, 8\pi_t/\pi_{1950}, \sigma_t = 0.1751 \cdot \mu_t$

Stefan Hochrainer, Reinhard Mechler, Georg Ch. Pflug Catastrophe Modeling: Including Global and Climate Changes

Global Change

Let G_t be the loss distribution $G_t(\ell) = P\{L_t \le \ell\}$. We estimated this distributions for the years 2005-2050.

IIASA's CATSIM Model Part II: Macro-economic Risk

Stefan Hochrainer, Reinhard Mechler, Georg Ch. Pflug

Catastrophe Modeling: Including Global and Climate Changes

Results: GDP Development Comparisons 2005-2050

Stefan Hochrainer, Reinhard Mechler, Georg Ch. Pflug Catastrophe Modeling: Including Global and Climate Changes

Findings in IAM studies

Sensitivity Analysis of 2XCO2 Worldwide Global Tropical Cyclone Loss Estimates for 2050

Disaster losses in integrated assessment models

Source: Pielke Jr. and Sarewitz, 2005

Availability of high resolution GCM information

🐸 PRECIS - Mozilla Firefox			- 8
<u>File Edit View History Boo</u>	kmarks <u>T</u> ools <u>H</u> elp		
< * 🖒 * 🧭 C 🚱 🏠 🗋 http://precis.metoffice.com/worldwide.html		▼ ► Google	Q
Microinsurance_stud			
The purpose of this pa	age to give examples of institutions worldwide who have run or are running PRECIS.		
REGION	INSTITUTE		
	South Asia (Pakistan, India, Nepal, Bhutan, Bangladesh, Sri Lanka) led by Rupa Kumar Kolli at the <u>Indian Institute of Tro</u> <u>Meteorology</u> .	pical	
	Southern South America (Argentina, Uruguay, Chile, Brazil) led by Silvina Solman of <u>CIMA-CONICET/UBA</u> Argentina		
	Northem South America (Brazil, Peru, Ecuador, Venezuela, Suriname, Guyana, Colombia) led by Jose Marengo of <u>CPTE</u>	<u>3C</u> Brazil	
	China - Run by Yinlong Xu of the <u>Chinese Academy of Agricultural Sciences</u>		
	Eritrea - A region run by Asmerom Beraki at the University of Pretoria, South Africa.		
1	Southern Africa - Run by Charles Williams at the University of Sussex, UK. A similar region is run by Mark Tadross at the Capetown, South Africa.	.e University of	
(),	Antartica - Run by Dominic Kniveton at the University of Sussex		
Done	8 - 129 Mr 100 Enders 100 2 Mr 100 Ellers 100 4 Ad - 1 100 49 AS - 100 - 10		4,50,000
	n Y 🛄 S Mic Y 🥪 Euluura j 🚾 Z Mic Y 🧰 7 Mic Y 💽 Skype 🦯 4 Ad Y 🔤 😻 🤯 🎝 🕑 🕼		< 4:52 PM

- Mitigation decision: Benefits to mitigation (see Stern, 2007; IPCC, 2007)
 - Cost of inaction of 5-20% losses GDP/a can be avoided
 - With mitigation cost of 1% GDP/a
 - Global, public sector decision problem: parties to UNFCCC
- Adaptation decision: Benefits to adaptation
 - Where and who?
 - How much?
 - When?
 - Rather shorter term in line with decision problem
 - Political cycle: 4 a
 - Infrastructure investment decisions < 30-50 a

Discussion

Risk management framework and adaptation and mitigation

Source: IPCC AR4, WG II (Carter, Jones et al., 2007)

Discussion Decision support

Trajectories of governments' variable (discretionary) budget for a time horizon of 10 years

Conclusions

- Dynamic framework to assess future risks
- Country-level analysis responds to decision-problem of national-level decisonmakers
- Global changes, e.g. reduction of physical vulnerability, seems more important for Bangladesh than threat of climate change, e.g. increase in rainfall intensity
- Yet, differences between global and climate change not as pronounced as with top-down IAM
- Spatially resolved climate and climate change information increasingly available

Problems

- RCM has focus on mean changes, no variability
- Country-level disaster risk analysis more applicable to smaller countries or countries with simple topography
- Uncertainties large, not always possible to quantify
- Few data points on disaster impacts and vulnerability
- Uncertainty in tail estimation in general extrapolation beyond the maximal observed value
- High residual (unexplained) variances

Next steps

- Journal paper
- Presentation at UN/World Bank Expert Workshop: Integrating Climate Change Information into Disaster Risk Analysis, Spring 2008