Current Regional Air Quality Modeling Activities

10th MICS-Asia Workshop at IIASA February 18-19, 2008

Joshua Fu¹, Nicky Lam¹, Yuan Du¹, Roger Chuang², Roger Kwok³, Qiang Zhang⁶, Carey Jang⁵, David Streets⁶, Loretta Mickely⁷, Daniel Jacob⁷, Jimmy Fung³ and Alexis Lau³, Chung-Te Lee²,

> ¹University of Tennessee, USA ²National Center University, Taiwan ³Hong Kong University of Science and Technology, HK ⁴Tsinghai University, China ⁵U.S. Environmental Protection Agency, USA ⁶Argonne National Laboratory, USA ⁷Harvard University, USA

Current Regional Modeling Status

- US and East Asia (global impacts)
- East Asia (O3, PM2.5, acid deposition, global impacts to Asia)
- YRD region (03, PM2.5, acid deposition)
- Таіwan region (03, РМ2.5)
- PRD region (Sulfate)

East Asia Regional Modeling Configuration

Features : Models-3/CMAQ One-Atmosphere (multi-pollutants) Modeling

- 2001, 2005 (2006) scenarios
- US and Asia CMAQ Domains

Model Setup :

- NASA's TRACE-P and INTEX-B emission inventories and local emissions and GEIA biogenic emission inventory
- Emissions Processing: Spatial allocation (GIS/Gridding) and SMOKE, Temporal, speciation needed for the M3/CMAQ simulations
- 36-km, 12-km, 4-km and 40.5km, 13.5km, 4.5km and 1.5km, 14 and 27 vertical layers
- Meteorology : MM5 V3.7
- CMAQ V4.5.2 -> V.4.6.1
- CB-IV, CB05, SAPRC99

CMAQ comparison

2001 GISS data 2050 GISS data

O₃ concentration vs. Temperature

Layer 1 YEAR2001 => O3 AVG

a=CMAQ_GISS_US36.2001All.avg_concOth_1

Layer 1 TEMP10m

Layer 1 YEAR2050 => O3 AVE

Min= 287.7 at (10,109), Max= 319.2 at (28,43)

Maximum O₃

Layer 1 YEAR2001 => O3_MAX

f=CMAQ_GISS_US36.2001All.max_concOth_1 i=CMAQ_GISS_US36.2050All.max_concOth_1 150.0112 150.0112 50.0 112 125.0 125.0 25.0 100.0 100.0 75.0 75.0 0.0 50.0 50.0 -25.0 25.0 25.0 - 0.0 ppb∀ 0.0 -50.0 1 1 vdqq ppbV 148 148 June 1,2001 1:00:00 Min= 24.1 at (35,16), Max= 171.0 at (25,47) June 1,2050 1:00:00 Min= 23.0 at (18,6), Max= 216.9 at (128,55) Hour: 08 Min= -53.0 at (16,52), Max= 110.1 at (128,55)

Layer 1 YEAR2050 => O3_MAX

Layer 1 2050 O3 Max - 2001 O3 Max

148

PM_{2.5}

Layer 1 YEAR2000 => PM2.5

Layer 1 YEAR2050 => PM2.5

Layer 1 2050 PM2.5 Avg - 2001 PM2.5 Avg

Average O3 Concentration

	Mid West	North East	South East	Full Domain	
2001_Temp_AVG	299.4	298.6	302.7	297.4	
2050_Temp_AVG	300.8	300.2	303.6	298.5	
Diff	1.4	1.7	0.8	1.1	
Maximum O3 Conc	entration				
	Mid West	North East	South East	Full Domain	
2001_Temp_MAX	311.1	308.6	309.9	305.6	
2050_Temp_MAX	313.0	311.1	310.8	307.2	
Diff	1.9	2.5	0.9	1.7	
2001_03_MAX	63.8	91.3	81.6	58.4	
2050_03_MAX	66.7	98.7	79.7	58.5	
Diff	2.9	7.5	-1.9	0.1	

GISS_Havard_20010630_00Hr_36km

MM5_UTenn_20010701_00Hr_108km

The Problem may be caused by the resolution of FDDA Data (4x5). The FDDA can not capture the actual scene of GISS data.

GISS_Havard_20010630_00Hr_108km

MM5_UTenn_20010701_00Hr_108km

The Problem may be caused by the resolution of FDDA Data (4x5). The FDDA can not capture the actual scene of GISS data.

GISS_Havard_20010701_00Hr_108km

MM5_UTenn_20010701_00Hr_108km with 0.3 x 0.3 resolution FDDA

The problem is still existed, even though 0.3 x 0.3 resolution of FDDA data is used. It is believed that the land use model used in Mexico is caused the problem

MM5_UT_20010701_00Hr_108km

MM5_UTenn_20010701_00Hr_108km with 0.3 x 0.3 resolution FDDA _newTerrainInRegrid

The problem is still existed, even though 0.3 x 0.3 resolution of FDDA data is used. It is believed that the land use model used in Mexico is caused the problem

GISS_Havard_20010630_00Hr_108km

MM5_UTN_20010701_00Hr_108km

GISS_Havard_20010630_00Hr_36km

MM5_UTenn_20010701_00Hr_36km

Climatic Meteorology

Wind vectors and temperature at 10 m

MM5 simulation for July 01, 2001 using GISS GCM as inputs

Models-3/CMAQ Study Domains

36-km

East Asia Emissions

2001 (2000) 2005 and 2006 Comparisons

PSO₄

a=EM_cn36_2001001 q=EM_cn36_2005010 20.000 97 20.000 97 15.000 15.000 10.000 10.000 5.000 5.000 0.000 0.000 1 g/s 16 g/s 1 164 1 January 1,2001 0:00:00 Min= 0.000 at (1,1), Max= 129.731 at (114,75) January 10,2005 0:00:00 Min= 0.000 at (1,1), Max= 161.468 at (100,65)

1-14-layer average:Layer 14 PSO4a*14

1-14-layer average:Layer 14 PSO4q*14

2001 vs. 2005

2001 vs. 2006

Shanghai Map (on-going)

Sulfate Modeling Results in Taiwan

Focus of Study: Understanding high pressure system moved to Taiwan area

Case Study: December, 2004 (Winter HPP case)

Main episode weather patterns in Taiwan

HPPC (High Pressure Peripheral Circulation pattern) :

When the Asian continental high pressure system moves from China to the West Pacific, its peripheral circulation blows clockwise as to have the southeast wind around Taiwan.

WAF (Warm area Ahead of Front pattern) :

When the leading edge of the high-pressure air mass, i.e., the cold front or stagnant front gets very near Taiwan, Taiwan is located at the warm area ahead of the front.

Main episode weather patterns in Taiwan

150

140

110

120

130

100

HPP (High Pressure Pushing pattern) :

If the leading edge of Asian continental high pressure systems move fast from China to Taiwan, PM2.5 events will occur accompanied by a prevailing strong northeast wind which is observed at all sites in the greater Taipei area.

TYP (TYPhoon pattern) :

When the typhoon is located south or southeast of Taiwan, the peripheral circulation can be the southeast wind

Weather pattern		Event dave	Non-valid days	$PM_{2.5}$	$PM_{2.5}$	$PM_{2.5}$	$PM_{2.5}$
		Event days	Non-valid days	max	min	avg	s.d.
	HPPC	122	0	103	21	52	14
	WAF	98	0	98	13	49	16
	HPP	53	0	101	17	53	14
	TYP	34	1	90	28	46	12
	WHP	17	0	69	21	44	11
	PHP	15	1	66	10	40	12
	WSW	12	0	54	33	44	6
	other	1	0	—	—	51	—
Non-event	t days in spring	150	2	46	8	25	9
Non-event	t days in summer	219	2	44	6	24	10
Non-event days in autumn		184	25	53	7	22	9
Non-event days in winter		150	10	50	7	22	9

Note: the unit of $PM_{2.5}$ concentration is in µg m⁻³. A non-valid day is the one with fewer than 16 valid hourly values.

Weather pattern	Jan	Feb	Mar	Apr	May	June	Jul	Aug	Sept	Oct	Nov	Dec	Total
HPPC	17	22	20	23	13	4	0	0	2	3	9	9	122
WAF	10	16	15	19	13	8	1	1	2	0	4	9	98
HPP	12	5	3	1	4	0	0	0	3	12	3	10	53
TYP	0	0	0	4	4	2	4	5	7	5	4	0	35
WHP	0	0	0	1	3	2	3	5	3	0	0	0	17
PHP	0	0	0	0	0	0	5	4	3	4	0	0	16
WSW	0	0	0	0	0	3	2	6	1	0	0	0	12
other	0	0	0	0	1	0	0	0	0	0	0	0	1

From Chuang et al. (2007), events were defined from 2002 to 2005

Station	Monitoring item	Weather pattern	Effective hours	Avg.	<u>s.d</u> .	Max.	Min.	177
TAS	PM _{2.5} (µg m ⁻³)		937	54.1	23.8	148.3	6.5	Caller-
	PM ₂₅ sulfate (µg m ⁻³)		819	12.0	7.2	55.1	1.3	
	PM _{2.5} nitrate (µg m ⁻³)		806	2.6	2.0	14.9	0.4	
	РМ ₂₅ ОС (µg m ⁻³)		803	4.5	1.0	13.9	1.0	
	PM _{2.5} EC (µg m ⁻³)	HPP	524	1.7	0.8	8.6	1.0	
TPE	Wind speed (m s ⁻¹)		991	3.8	1.2	7.9	2.0	45004
	Wind direction (degree)		991	87	31	—	—	159%
	Surface pressure (mb)		991	1020.1	5.4	1031.2	1007.1	
PJY .	Wind speed (m s ⁻¹)		1248	7.2	2.2	15.2	2.1	
	Wind direction (degree)		1248	39	33	—	_	
	Surface pressure (mb)		1248	1021.9	5.0	1032.8	1009.5	
TAS	РМ ₂₅ (µg m ⁻³)		8250	22.6	11.4	64.5	5.0	
	PM ₂₅ sulfate (µg m ⁻³)		7662	4.7	3.5	28.5	0.4	
	PM _{2.5} nitrate (µg m ⁻³)		6717	1.4	1.1	20.2	0.4	
	РМ ₂₅ ОС (<u>µg</u> m ⁻³)		6747	3.5	1.7	18.0	1.0	
	РМ ₂₅ ЕС (<u>µg</u> m ⁻³)	non-HPP*	2142	1.7	1.2	13.9	1.0	
TPE	Wind speed (m s ⁻¹)		9093	3.8	1.2	12.1	2.0	
	Wind direction (degree)		9093	_	_	—	_	
	Surface pressure (mb)		9093	1017.2	5.9	1033.8	989.9	
PJY	Wind speed (m s ⁻¹)		12482	7.7	2.9	37.3	2.0	
	Wind direction (degree)		12482	_	_	_	_	
	Surface pressure (mb)		12482	1018.4	6.0	1036.0	990.4	

*Non-HPP time period is for days excluding June, July, August, and events time defined in <u>Chuang</u> et al. (2007) from 2002 to 2005.

Simulation domain

09:00 on day19

PM_{2.5} long-range transport animation

•The long-range transport episode on 20 December in 2004 was caused by a southward high pressure.

•A huge plume formed in China moved with the leading edge of the the southward high pressure.

Contribution from long-range

transport and local pollution

If the overpredicted nitrate is ignored, then local pollution contributed about 5% during the most intense influencing period of long-range transport.

Summary

•Long-range transport (LRT) from China to Taiwan occurred mainly in Fall, Winter, and Spring. PM2.5 level in episode period reached 54.1 μ g m⁻³. which was much higher than 22.6 μ g m⁻³ in non-episode period.

 In the study of simulation, episode occurred when Asia continental high pressure stretched southward to Taiwan.
Fine particles accompanied with air mass moving and dominated air quality in Taipei.

•This study reveals that LRT from Asia continent to Taiwan (even West Pacific countries) should be valued and need more studies.

Sulfate Modeling Results in Hong Kong

Focus of Study: Understanding high sulfate in PRD-HK

Two cases run:

- (1) July-August, 2004 (Summer case)
- (2) September, 2004 (Fall case)
- (3) December, 2004 (Winter case)

Model settings and inputs tabulated in the last two slices

Pearl River Delta And Hong Kong

Case: July-August 2004

08/01 Hourly, days of-2004

0.21

Case: Sep 2004

Case: December 2004

Hourly, days of-2004

Sulfate Modeling Results in Hong Kong

- Oct. case looks at month-long PM (especially SO₄) variations.
- The 30-day Sept. case runs sensitivity studies of SO₄.
- All cases consistently underestimate SO₄ and SO₂.
- PM_{2.5} (Sulfate PM) is still not well predicted

Next Steps – Regional Modeling

- Reprocess outside-GD emissions with the most update growth rates of SO2, NOx, and PM (Streets's 2005 and 2006)
- Analysis and sensitivity studies
- Additional model assessment in PRD
- Shanghai AQ modeling meteorology
- High pressure system effects in Taiwan islands
- WRF-CMAQ

Next Steps – Scale of MICS and HTAP

- Evaluate the effects of resolution & BCs (ensemble data) on regional ozone and PM predictions.
- Analyze ozone and PM concentration metrics for Global CTM and Regional CTM calculations.
- Calculate import and export fluxes (across altitude & longitudes) for Global CTM and Regional CTM calculations.
- Explore subregional domestic perturbation experiments

Acknowledgment

- USEPA
- HKEPD
- University of Tennessee Office of Research
- Argonne National Laboratory
- University of Iowa
- Hong Kong University of Science and Technology
- Tsinghua University

