Sensitivity of Secondary Inorganic Aerosol in Greater Tokyo to Foreign and Domestic Emissions

> Hiroshi HAYAMI CRIEPI

Time flies...

Second, July 22-23, 1999

Third, September 18-19, 1999

Last year...

How effective emission reductions in Tokyo are to SIA concentrations in Tokyo

- sulfate: very little change
- nitrate: -41% at zero emission
- SIA: -30% at zero emission

Non-linearity

- Non-linear b/w NOx emissions in Tokyo and nitrate in Tokyo
- Markus's comment

Non-linearity canceled at country/regional scales

Today...

- Sensitivity of emission changes in East Asia to SIA in Tokyo
 - simulations
 - 12 source regions in East Asia
 - +20% emissions in each region
 - one-year simulations with MM5/CMAQ

analysis

- sensitivity: SIA response (R_i [%]) = $C_{i+20\%}$ / C_{CNT} 1
- linearity: $\sum R_i$ vs. R_{ALL} (= all emissions +20%)
- Inearity: R_{i+20%} vs. R_{i-20%}

12 source regions

TKY: Tokyo JPN: Japanese Isls. • KOR: Korean Pen. • NEC: NE China NCC: N Central China MCC: Middle C China SCC: South C China • NWC: NW China SWC: SW China • OCN: Ships VOL: Volcanoes OTH: Taiwan, Mongolia, **SE** Asia

Emissions from source regions

Monthly Emission [Mt/mo]

VOL: Volcanoes OCN: Ships over the ocean OTH: Taiwan, Mongolia, etc. SWC: South Western China **NWC: North Western China** SCC: South Central China MCC: Middle Central China NCC: North Central China **NEC: North Eastern China KOR: Korean Peninsula** JPN: Japan w/o G.Tokyo **TKY: Greater Tokyo**

Sensitivity of SIA to +20% emis.

SIA in Tokyo is most influenced by Tokyo
followed by JPN, NCC, KOR...
nitrate more locally than sulfate
(SO₂ controlled by local emissions)

Monthly Changes: SO2

SO₂ increased by ~20% to +20% local emissions
SO₂ mostly controlled by local emissions
simulations done correctly

Monthly Changes: sulfate

seasonal variations

- NCC changes most in springtime
- domestic sources changes most in summertime, when concentrations are highest.

Monthly Changes: nitrate

►R_{TKY} > 20% in summertime

- R_{TKY} of total nitrate ~ 14 %
- ammonia also emitted at +20%
- particulate-to-total nitrate ratio increased much

► R_{TKY} < 0% in wintertime

NO[™] leads to O3[™] followed by nitrate[™]

linearity: ΣR_i vs. R_{ALL}

monthly R_{ALL}

sulfate: ΣR_i is smaller than R_{AII} by 14% \blacktriangleright nitrate: $\Sigma R_i = R_{AII}$, suggesting linearity? • note: ΣR_i includes negative R_{TKY}

linearity: R_{i+20%} vs. R_{i-20%}

monthly R_{ALLi+20%}

For distant sources, R_{i+20%} = -R_{i-20%}
For local sources, R_{i+20%} != -R_{i-20%}

Summary

SIA in Tokyo responds to emissions in Tokyo followed by JPN, NCC and KOR distant sources influence in springtime

Linearity

- some errors induced in S/R estimates by assuming linearity
- Inearity approximated in sensitivity analysis for distant sources

Further work

- How about other changes than 20%?
- How about changes in only burning sources?
 - in the present study, all emissions from burning and non-burning sources changed