MICS-Asia, 10th Workshop

February 18-19, IIASA

A long term trend in VOC's photochemical reactivity in Japan

Akiyoshi Kannari/ Independent researcher, Visiting researcher, NIES Toshimasa Ohara/ National Institute for Environmental Studies (NIES)

Recent problems on surface O₃ concentrations around mega-cities in Japan

*1 Plots are three years moving averages

*2 Numbers in the figure indicate monitoring site numbers by time stage

O3max=Highest 5% days averages of daily maximum one hour concentration NMHC_{5-15h}, NOx_{5-15h} =Composite means on the O_{3max} highest 5% days

1. Analyses on the "ozone weekend effects"

Weekend changes of NMHC and NOx concentrations

One of the results: Spatial changes of "ozone weekend effects" (An example in the Tokyo metropolitan area, highest 5% days averages)

- 1. *Weekend increase* at the source areas is changed to *weekend decrease* in the inland areas
- 2. Location of the boundary line changes by period

Surface wind system on the highest 5% days of O_{3max} is stable through the 4 periods

(Observed mean surface wind by time)

One of the results: Temporal changes of "ozone weekend effects"

Boundary NMHC/NOx calculable under the following conditions

Ozone weekend change varies once from increase to decrease.
At that time, NMHC/NOx must increase along the percentile both weekdays and weekends.
NMHC/NOx on weekend must be higher than weekdays.

Hanyu, SAITAMA

% 100

80

60

40

20

0

20 40

60 80

1998-2002

Reversed point of

Weekend effects

11217010 鴻巣 埼玉県 鴻巣市

Site numbers' distribution of estimated **boundary NMHC/NOx** in the two periods

Site numbers

Estimation of boundary NMHC/NOx of O3 formation regimes (for the whole domain in Japan)

Average and its 95% confidence interval

Another estimates by the different time durations (by the analysis of every moving 3 years data)

Boundary of "direction of ozone weekend change"

 \downarrow 1 equivalent to

Boundary of "ozone formation regimes"

2. Consideration of 'boundary' using ozone isopleth diagrams

Estimation of ozone isopleth diagrams

- Numerical simulation based on the CB4 chemical mechanism
- Giving NMHC, NOx initial concentration to closed box system without emission, ventilation and deposition
- Solar radiation, Temperature, Humidity
- \rightarrow mean diurnal variation in the highest 5 % days of O_{3max}
- Calculate a peak ozone concentration during 5-19h
- 50 x 50 cases of NMHC, NOx initial concentrations for a diagram

Meteorological condition on the highest 5 % days of O_{3max} in the Tokyo metropolitan area

Humidity

Time of Day

O_{3max} isopleth diagrams obtained from the single CB4 lumped species simulations (1)

O_{3max} isopleth diagrams obtained from the single CB4 lumped species simulations (2)

Boundary NMHC/NOx of ozone formation regimes for CB4 lumped species

An example of comparison on the relative reactivity of lumped species

Relative reactivity is different in different regime position

Geographical distribution of NOx, NMHC daytime emissions in August, 2000

(EAGrid2000-JAPAN)

VOC composition (summary) in the Tokyo metropolitan source area in August, 2000 (Day time emissions from 5 to 15 o'clock)

(Estimated from the EAGrid2000-JAPAN Emission database using the SPECIATE, JCAP composition profiles and the governmental solvent data)

Emission sources

Ozone isopleth diagram based on the really emitted VOC composition in the Tokyo metropolitan area, August, 2000

NMHC, ppbC

Source specific O_{3max} isopleth diagrams based on the VOC composition by source (2)

Shaded area= more reactive than the 'total mixture'

Source specific O_{3max} isopleth diagrams based on the VOC composition by source (3)

Shaded area= more reactive than the 'total mixture'

Source specific O_{3max} isopleth diagrams based on the VOC composition by source (4)

Shaded area= more reactive than the 'total mixture'

Comparison of boundary NMHC/NOx between the sources

"total mixture" is significantly affected by the component distribution ratios

3. Cause of the trends

(1) Cause of NMHC decrease(2) Cause of decreasing boundary NMHC/NOx of ozone formation regime

Hypothesis 1. Changes on vehicles emissions

80% reduction of gasoline exhaust and vapor 50% growth of diesel exhaust

Reactivity \rightarrow 1.8 times, max NMHC concentration \rightarrow 0.6 times

Hypothesis 2. Change of meteorological condition

Reactivity \rightarrow 1.3 times, max

(different by position in the regime)

Conclusions

- 1. Boundary NMHC/NOx between "ozone weekend increase" and "ozone weekend decrease" is historically descending from 1980's to 2000.
- 2. Boundary of "ozone weekend change" is thought to be equivalent to the boundary of "ozone formation regimes".
- 3. Modeled ozone isopleth diagrams suggest relationship between the boundary NMHC/NOx of regimes and reactivity of the compounds;

'lower NMHC/NOx' means 'more reactive'

4. Estimated historical increase of VOC reactivity is a part of the cause of peak ozone increase despite of the decreasing of concentration itself.

Future tasks

- Developing historical emission inventories for verification of our estimation
- Precise information of source specific VOC composition in detail, including seasonal variation
- How are the other regions in the world?
- Strategy of more efficient VOC source measures for ozone reduction

Fuel consumption trends of gasoline and diesel oil in Japan

(Statistical Report on Motor Vehicle Transport)