Oki/Kanae Lab.

IIS. The University of Tokyo

Evaluation of Gaseous Pollutants and Source-receptor Relationships for Reactive Nitrogen Deposition in East Asia

Meiyun Lin <u>lin@rainbow.iis.u-tokyo.ac.jp</u>

University of Tokyo (Moving to University of Wisconsin-Madison soon)

10th MICS-Asia workshop at Vienna, Feb 18-19, 2008

東京大学生產技術研究所 **沖・鼎研究室**

Contents

2.1 Model Components and its configuration

2

1 MODEL Description: Simulation Features in East Asia

Horizontal Domains

- -- Center: (110E, 25N), East Asia
- -- Coarse grid: 81 km
- -- One way nested fine grid: 27km

Locations of EANET monitoring sites are shown with labeling IDs

Vertical Distribution

- -- 23 sigma layers for meteorology
- -- 8 sigma layers for Chemical Transport
- -- Lowest : ~70m above ground
- -- Highest : ~13 km above ground
- -- Finer resolution in the lowest 1500 m

Initial / Boundary Conditions

-- 2001 annual simulation with hourly time step is initialized on Dec 15^{th} 2000 with standard concentration values

-- Lateral BC of CMAQ:

Coarse (81km): monthly mean BC extracted from MOZART-NCEP, including PAN and NH4NO3

Fine (27km) : hourly varying BC extracted from CMAQ 81-km output

--No upper O_3 BC employed in CMAQ

Observation Data

- -- Ground-based monitoring (EANET2002)
- -- Satellite-borne NO₂ columns: Global Ozone Monitoring Experiment (GOME) (Ritcher et al., 2005, Nature)

Model Description Meiyun Lir	in March 7, 2008 Slide 4
------------------------------	--------------------------

1. 2 Emissions: Sources and Characteristics of Emission Data

References	Source types (species)	Applied region (Resolution)	Temporal	
MICS-Asia (Streets et al.,2003)	Anthropogenic area and Large Point Sources (SO ₂ , NO _x , NH ₃ , CO, BC, OC, PM ₁₀ , PM _{2.5} , VOCs)	All regions except Russian (0.5x0.5°)	Domestic heating and NH_3 / CH_4 emission from China only	
GEIA (Martin et al.,2005a)	Anthropogenic area (NO _x , CO, and VOCs only)	Russian only (0.5x0.5°)	Seasonal	
EDGAR FT2000 (Oliver et al.,2005)	Anthropogenic area $(SO_2 \text{ and } NH_3 \text{ only })$	Russian only (1x1°)	Annual	
GEIA (Martin et al.,2005b)	Biomass burning (SO ₂ , NO _x , NH ₃ , BC, OC, PM _{2.5} , VOCs)	All regions (0.5x0.5°)	Seasonal	
GEIA POET (Grannier et al., 2005)	Biogenic (CO, NO, VOCs)	All regions (1x1°)	Seasonal	
Kajino et al.,2004 Kazahaya et al.,2004	Volcanic (SO ₂)	Miyakejima volcano	Seasonal	
Fujita et al., 1992	Volcanic (SO ₂)	Other volcanoes	Annual	

No emissions of sea saltNo emissions of soil dust

 \times No emissions of lightening NOx

$\frac{1}{3}$.1 Seasonal variations of surface concentrations of SO_2

3.1 Hourly mixing ratios of $\mathbb{S0}_2$

0.1 0.6 2.0 4.0 6.0 8.0 10.0 11.5 13.0 15.0 18.0 20.0 Note: the filled circles show the observed values

- Successfully reproduce the diurnal variations and magnitudes of SO₂
- The 27-km grid simulation captures the fine dynamic structure of SO₂ mixing ratios at Oki and Banryu
- Mountain Happo: local vertical mixing associated with topography
- Urban Banryu: sub-grid variation of SO₂ emissions and fine scale dispersion
- Short-term changes of met condition: large-scale observational data ingested in the global reanalysis in MM5

Meiyun Lin 7-Mar-08 Slide 7

20

30

5

10

50

75

100

150

200

3.2 Tropospheric NO₂ COLUMN density

Calculate NO₂ column amount from vertical resolved mixing ratio, temperature, and pressure *

$$VCD = \sum_{l=1}^{8} \frac{P_l \times \Delta Z_l \times A \times [NO_2]_{ppm,l}}{Rg \times T_l \times 10^6 \times 10^4}$$

at 03:00 UTC (11:00 LT for China and 12:00 LT for Japan)

- Both highlight the areas of intense pollution in * industrialized regions
- **Seasonal variations** of NO_x lifetime in PBL, meteorological conditions, and higher winter * emissions

Summer: soil-biogenic NO emissions from grassland/scrubland in mid-latitudes

Short lifetime \rightarrow NO₂ abundance in PBL \rightarrow controlled by regional emissions, less by \diamond transport

Spring/Winter: anthropogenic emission in central eastern China and Japan

March 7, 2008 Slide 8 Meiyun Lin

3.2 Implication for uncertainty in soil-biogenic emission of NO

Large spatiotemporal variability of the microbial soil processes

- Temperature, soil, and precipitation dependent
- Stimulation of N-fertilizer and biomass burning
- Biome-dependent canopy recapture
- Rain-induced pulsing (an increase of NOx measured after a shower of rain)

Main uncertainty of soil-biogenic NO estimates by Yienger and Levi (1995)

- Spring: the fraction of applied N-fertilizer released as NO (0.3% ~ 2.5%) and the timing of fertilizer application
- Summer: Exclude the possibility of rain-induced pulsing in arid-scrubland/desert regions (e.g. western China)

Model Description

Meiyun Lin

March 7, 2008

3.2 Hourly NO_x mixing ratios in March compared with ground-based monitoring

3.2 Hourly NO_x mixing ratios in <u>December</u> compared with ground-based monitoring

Local Time (JST)

A similar spatial pattern: -Better agreement in north Japan

-Discrepancies in south Japan

- NOx predictions have larger uncertainty in central and south Japan than in northern Japan
- 3 Model Evaluation

Meiyun Lin

March 7, 2008

3.2 Sensitivity simulation with NO_x emission increased by 50%

3.3 Sensitivity of O₃ boundary condition

3.3 Seasonal cycle of surface 0₃ (Sensitivity of BC and photochemistry)

3.3 Sensitivity of photochemistry to 0₃ production in summer

3.3 Hourly time series of O₃ **mixing ratios in July**

Coarse-grid vs Fine-grid

- Over-prediction of the coarse simulations on low ozone days
- Hourly varying BC likely improve the find grid simulation

SAPRC vs CBIV

Meiyun Lin

- High O₃ production efficiency of <u>SAPRC99</u>: high O₃ at urban area with a high quality of emission inventory
- CBIV: O₃ prediction at regional scale with the coarse grid spacing

7-Mar-08

3.3 Correlations of NO, NO_x and O₃ mixing ratios at the rural site Ijira

Contents

4.1 Source region attribution methodology: source division map

>> Division of emitter regions or groups of sources <<

- Seven source regions in China
- Seven source regions in Southeast Asia
- ✤ SHIP: International shipping
- ICBC: Initial and boundary Condition (MOZART)
- Volcanoes

SO₂ emission from volcanoes

Sources: http://www.carer.u

http://www.cgrer.uiowa.edu/EMISSION_DATA/index_16.htm

4.1 Source region attribution methodology

Reactive Nitrogen [$NO_y = NO + NO_2 + NO_3 + 2N_2O_5 + HONO + HNO_4 + HNO_3 + Aerosol Nitrate + PAN(s) + other organic nitrates]$

Nonlinearities in atmospheric chemistry and deposition process in Eulerian models

- Three scenarios of emission reduction for each source region
 - 100RM_SO₂_NO_x_NH₃ : a 100% reduction of SO₂, NO_x, and NH₃ simultaneously
- $2 25 \text{RM}_{SO_2} \text{NO}_{x} \text{NH}_{3}$

 $25 \text{RM}_{SO_2} \text{NO}_{x}$

Source-receptor relationships

: a 25% reduction of $SO_{2'}$, $NO_{x'}$ and NH_3 simultaneously

March 7, 2008

Slide 21

: a 25% reduction of SO_2 and NO_x simultaneously

Meiyun Lin

Propose a source region attribution methodology applicable for reactive nitrogen

- /

3

4.1 Influences of NH₃ emission reduction to gas/aerosol partitioning

Thermodynamic equilibrium between gaseous HNO₃ and aerosol nitrate

(R1)
$$NO_{2(g)} + OH_{(g)} \leftrightarrow HNO_{3(g)}$$

(R2) $NO_{3(g)} + NO_{2(g)} \rightarrow N_2O_{5(g)}$

(R3) $N_2O_{5(g)} + H_2O_{(l)} \to 2HNO_{3(g)}$

(R4) $NH_4NO_{3(s)} \Leftrightarrow NH_{3(g)} + HNO_{3(g)}$

Atmospheric lifetime:

 $NH_4NO_3 > HNO_3$ $NH_4NO_3 > NH_3$

March 7, 2008

For the reduction case of 25RM_SO₂_NO_x_NH₃

A deficit in the availability of ammonia over Central China

4.1 Relationships of dry deposition between baseline simulation and sum of regional contributions due to emissions perturbation

4.1 Relationships of wet deposition between baseline simulation and sum of regional contributions due to emissions perturbation

4.1 Method Proposal for source region attribution of acid deposition

Departure from Linearity for 25RM_SO₂_NO_x

(a) TOXS (SumSR/Base - 25%)

Findings:

- Departure from linear behavior depend on the extent of emission perturbation
- The reduction of ammonia show the largest non-linear effects on the deposition of reactive nitrogen

Proposal: 25RM_SO₂_NO_x

- Departure from linearity at most areas are generally lower than 2% for sulfur, and lower than 5% for reactive nitrogen.
- Realistic increase/reduction of combustion related SO₂ and NO_x
- Large enough emission changes for model response

Source-receptor relationships

(4)

Meiyun Lin March 7, 2008

4.2 Results and Discussions: Source receptor relationships for sulfur in 2001

Source-receptor relationships

Meiyun Lin March 7, 2008

4.2 Results and discussions: source receptor relationships for reactive nitrogen in 2001

4.2 Results and Discussion: seasonal variability of source-receptor relationships

- Consider wet deposition alone
- Strong seasonal variation reflecting the Asian monsoon circulation
 - wet scavenging + prevailing winds
- Maximum effects of long-range transport during the dry season

Southeast Asia: Biomass burning sources and northeastward transport in spring time

Sources of acid deposition in Japan

-- Volcanic sources dominate total sulfur wet deposition in Japan

-- High production of aerosol nitrate in central Japan

4.2 Results and discussions: Compared with previous studies

Sultur sources over Japan (%)							
References	Year	China	N-S Korea	Japan	Volcano		
Huang et al. (1995 $)$	1989	3.5	2ª	93 ^b	-		
Ichikawa and Fujita $\left(1995\right)$	1990	(45)	(16)	(33)	20		
Ichikawa et al.(1998)	1990	25.0	16	40	18		
Ardnt et al.(1998)	1990	(17)	(14)	-	quoted values for		
Calori et al.(2001)	1997	36.0	12	-	anthropogenic sulfur only		
This study ^c	2001	15.4(31)	3.5(7)	18.4(37.2)	50.4		

^aSouth Korea only

** ** ^bCombined contribution from anthropogenic and volcanic sources in Japan

^c Boundary contribution in this stusy is (8.9)17.8%

JPN \rightarrow a remarkable contribution of Miyakejima volcano in the year 2001 JPN \rightarrow a considerable inflow of sulfur compounds from regions outside of the study domain

* The results obtained in this study are more realistic

Sulfur sources over Vietnam (%)

References	Year	China	Vietnam	Thailand	Boundary	Shipping	
Ard nt et al. (1998 $)$	1990	40	36	19	-	-	
Engardt et al.(2005)	2000	38 <mark>ª</mark>	41	7	9	1	
This study ^b	2001	51.4	15.3	10.5	5.3	3.0	
••••••••••••••••••••••••••••••••••••••							

^aParts of Southern China only

^b Other noticeable ($\geq 2.0\%$) contributors are IND (2.9%), PHL (3.3%), and volcano (2.5%)

VNM \rightarrow more effects of long-range transport in Eulerian models as contrast to simple Lagrangian model **

March 7, 2008

Source-receptor relationships of total reactive nitrogen in East Asia

Receptors \rightarrow	Taiwan		N-S Korea		Japan		China	
Sources \downarrow	This	ATMOS-	This	ATMOS-	This	ATMOS-	This	ATMOS-
	study	Ν	study	Ν	study	Ν	study	Ν
Taiwan	46.0	80	1.1	-	0.9	2	1.6	2
N-S Korea	4.2	-	46.9	61.5^{a}	14.9	15^a	2.6	1^a
Japan	1.8	1	4.6	2.5^{b}	55.7	65	0.5	-
China	34.1	18	39.1	36^{b}	20.6	18	79.7	90
SE Asia	6.6	-	0.6	-	0.6	-	4.0	-
Shipping	6.5	-	2.1	-	3.4	-	1.1	-
Boundary	0.6	-	4.3	-	2.7	-	8.1	-

a. Taken as combined contribution from emissions in South and North Korea

b. Taken as averaged contribution to deposition in South Korea and deposition in North Korea Lagrangian ATMOS-N, Holloway et al, 2002

- Domestic emissions are the primary sources of nitrogen deposition in the receptors shown in the table
- This study shows more long-range transport effects from foreign sources by using a 3-D Eulerian model as contrast to the simple Lagrangian models

4

August 18, 2007

Conclusions

- The model successfully reproduces the magnitudes, daily, and diurnal variations of SO₂ mixing ratios especially with 27-km grid spacing. Main uncertainty of SO₂ predictions is caused by the representation of model topography and sub-grid variation of emissions in urban areas, which may not be resolved in the coarse 81-km grid resolution.
- Integrated analysis using satellite measurements and ground-based monitoring suggests that
 Soil-biogenic NO emission from grasslands/scrubland/desert in the middle-latitudes are likely underestimated during the wet season.

-- Anthropogenic NO_x emissions in winter are likely under-estimated in by 50% over central eastern China and by 25% over Japan

- The photochemical production of O₃ in summer over central eastern China and central Japan is highly sensitive to the chemical mechanisms applied in CMAQ. The CBIV simulation with 27-km grid resolution gives the best agreement against observation data. The SAPRC99 simulation with 81-km grid resolution largely over-predicts the observed O₃ in central Japan especially on low ozone days.
- Reduction of ammonia emissions has significant non-linear effects on the thermodynamic equilibrium between nitric acid and aerosol nitrate. A source region attribution methodology is proposed perturbing SO₂ and NO_x for the calculation of source-receptor relationships for sulfur and reactive nitrogen.

Conclusions (continued)

Sulfur inflows from regions outside the study domain are pronounced (10~40%) over different parts of Asia. Compared with previous studies using simple Lagrangian models, S/R relationships of reactive nitrogen derived in this study firstly using a complex 3-D Eulerian model, indicate higher influence from long-range transport. The estimated S/R relationships are believed to be more realistic since they include the global influences and internal interactions among different parts of China

Connections to MICS-Asia Phase II

- This study follows the general intercomparison framework of MICS-Asia Phase II, but the model evaluation provides additional information such as the use of GOME data to evaluate NOx emissions, the influence of hourly varying BC, and the photochemical sensitivity of ozone production.
- This study have estimated S/R relationships for sulfur and reactive nitrogen using the state-of-the-art 3-D Eulerian model. This provides an important connection between the focuses of MICS Phase I and Phase II. The analysis shows that the influence of aerosol chemistry to predicted S/R relationships is significant.

Thank you for your attention!