Impacts of Anthropogenic NOx and VOC Emissions Change on Surface Ozone in East Asia: the Effects of Long-range Transport and Domestic Sources

11th MICS-Asia Workshop at IIASA February 26-27, 2009

Joshua Fu¹, Yun-Fat Lam¹, Yang Gao¹ Rokjin Park², Daniel Jacob³

¹University of Tennessee, USA ²Seoul National University, Korea ³Harvard University, USA

Outline

- Follow up the HTAP Meeting at Jülich and Hanoi in November, 2007
- Influences Effects of SR Cases (by areas in East Asia and Megacities)
- The Issue of Downscaling Process for Initial & Boundary Conditions in Vertical Layers
- Summary

Modeling domains

Regional Modeling Domains: EU, SA, EA

Urban Domains: mega-cities

60 30 C -30

36 km Annual National US domain

90

100

120

80

180

-90

40

50

60

30

20

36-km

HTAP SR Scenarios in East Asia

- SR1: Base-case simulation for year 2001
 - SR3EU: Anthropogenic NOx emissions reduced 20% over Europe
- SR3SA: Anthropogenic NOx emissions reduced 20% over South Asia
 - SR3NA: Anthropogenic NOx emissions reduced 20% over North America
- SR3local: Anthropogenic NOx emissions reduced 20% over East Asia
 - SR6EU: Combined reduction of anthropogenic emissions(NOx/NMVOC/CO/SO2/NH3/POM/EC) by 20% over Europe
 - SR6SA:Combined reduction of anthropogenic
emissions by 20% over South AsiaSR6NA:Combined reduction of anthropogenic
emissions by 20% over North AmericaSR6Iocal:Combined reduction of anthropogenic
 - SR6local: Combined reduction of anthropogenic emissions by 20% over East Asia

GEOS-Chem Configurations

- Domain:
- Horizontal Grid Spacing:
- Horizontal Coordinate:
- Vertical Grid Spacing:
- Simulation Period:
- Meteorological Input:

Global 2° x 2.5° Lat x Lon 30 layers 2001, 2002 GEO3, GEO4

East Asia Regional Modeling Configurations

Features : Models-3/CMAQ One-Atmosphere (multi-pollutants) Modeling

- 2001 January, April and July scenarios
- 36-km East Asia CMAQ Domain in Lambert Conformal projection

Model Setup :

- NASA's TRACE-P and updated emission inventories and local emissions and GEIA/MODIS biogenic emission inventory
- Emissions Processing: Spatial allocation (GIS/Gridding) and Temporal, speciation needed for the M3/CMAQ simulations
- 36-km and 14 vertical layers
- Meteorology : MM5 V3.7
- **CMAQ V.4.6**
- Chemical mechanism: CB-IV
- Initial and Boundary Conditions: GEOS-Chem

Models-3/CMAQ Study Domains

- East Asia (36-km)
- Beijing region
- Shanghai region

- Wulumuqi
- Chengdu
- Taipei
- PRD region
- Tokyo
- Seoul

36-km

Transport Impacts in Megacities : between the base case and control cases

- Case1: SR1 SR3EU (NOx 20% reduction)
 - Case2: SR1 SR3SA (NOx 20% reduction)
- Case3: SR1 SR3NA (NOx 20% reduction)
- Case4: SR1 SR3local (NOx 20% reduction)
- Case5: SR1 SR6EU (Anthropogenic 20% reduction)
- Case6: SR1 SR6SA (Anthropogenic 20% reduction)
- Case7: SR1 SR6NA (Anthropogenic 20% reduction)
- Case8: SR1 SR6local (Anthropogenic 20% reduction)

EU (20% NOx Reduction) Influences to EA (AVERAGE) SR1-SR3EU 12 12 Annual: 10 10 Layer 0.12 8 8 Fiore et al. (2008) 6 2 ^{0.15} JAN Unit: ppbv ^o 0.05 0.2 0.25 0.3 ^{0.3}APR ^{0.4} 0 0.1 0.1 0.2 0.5 0.6 0.7 ----- EA -- BJ 12 12 **** SH 10 10 🕂 🖓 Wulu Layer**0**.... ChDu Taipei 6 PRD Tokyo 1 Seoul 0.2 0.5 ^{0.3}OCT ^{0.4} 0.1 ^{0.3}JUL ^{0.4} 0.6 0.7 0.1 0.5 0.6 0 0.2 0.7 0

Local (20% NOx Reduction) Influences to EA (AVERAGE)

EU (20% Anth. Reduction) Influences to EA (AVERAGE) SR1-SR6EU 12 12 **JAN:0.2** 10 10 Layer **APR:0.4** 8 **JUL:0.1** OCT:0.25 6 Fiore et al. (2008)2 ^{0.35} Unit: ppbv ^{0.2}JAN^{0.25} ^{0.3}APR ^{0.4} 0.5 0.05 0.15 0.3 0.1 0.2 0.1 0.6 0.7 ----- EA 14 14 - BJ 12 12 ••••••• SH 10 10 - 🕂 - Wulu Layer ChDu 8 Taipei 6 PRD Tokyo Seoul 2 ^{0.4} JUL^{0.5} 0.2 0.7 ^{0.3}OCT ^{0.4} 0 0.1 0.3 0.6 0.8 0.5 0.6 0.1 0.2 0.7 0

Local (20% Anth. Reduction) Influences to EA (AVERAGE)

VOC and NOX Sensitivity Analysis

Ozone diurnal variation

Each hour is monthly mean value

Unit: ppbv

VOC and NOX Sensitivity Analysis

Seoul

VOC and NOX Sensitivity Analysis

Impacts from VOCs in month afternoon average can reach 3 times as monthly average

30

PBL Height

Monthly maximum Surface ozone impact on EA from other sources 3.5 3 2.5 Unit: ppbv 2 1.5 -15<mark>4</mark> 0.5 Canada Concession -20 - -**-** - EA Ap JL Ap JL JL 0 Ap \mathbf{O} Ap SR3local SR6local SR3SA SR6SA - BJ 1.4 ----**+**--- SH 1.2 --- Wulu 1 ChDu 0.8 Taipei 0.6 PRD 0.4 Tokyo 0.2 Seoul ο Ap JL Ap Ap SR6EI SR3EI SR6NA

Monthly average vertical ozone impact on EA from other sources

Effect of using Global Chemistry Model for CMAQ IC/BC

"the simulation shows good agreement with ozonesonde data aloft, but leads to O3 overestimation near surface. The performance inconsistency implies that CMAQ could overestimate the vertical mixing and bring too much ozone downward.

* Tang, Y. H., et al. (2008) CMAQ predictions of tropospheric ozone over the continental United States. Environ Fluid Mech.

This mostly like cause bythe stratospheric ozone inGCM IC/BC

Ai-Saadi, J., Pierce, B., et al., (2007) Global Forecasting System (GFS) Project: Improving National chemistry forecasting and assimilation capabilities. Applications of Environmental Remote Sensing to Air Quality and Public Health, Potomac, MD.

Chemistry Model Downscaling

GEOS-Chem

- **Domain:** Global
- Horizontal Grid Spacing: 2° x 2.5°
- Horizontal Coordinate:
 - Lat x Lon
- Vertical Grid Spacing: 30 layers
- Simulation Period: 2001, 2002
- Meteorological Input: GEO3, GEO4

CMAQ Model
Version:

- Emissions: scenario
- Model Domain: CON

CMAQ

- Horizontal Grid Resolution:
- Vertical Grid Spacing:
- Simulation Period:

CONUS

2002

VISTAS

4.5

36-km

19 layers

JAN, JUN & JUL, 02

2002 CMAQ Scenarios – Jan, Jun & Jul

Three IC/BC scenario

1) Profile-IC/BC (Profile-BC)

Standard EPA fixed profile

- 2) ORDY-IC/BC (ORDY-BC) using GEOS-Chem output Elevation/pressure interpolation method
- 3) Tropopause Interpolation IC/BC (Tropo-BC)- using GEOS-Chem output

Apply tropopause as part of the criteria

Observation Vs. Simulated Value

2002 Statistical Output – Jan, Jun & Jul

22 B		Profile-BC	ORDY-BC	Tropo-BC
JAN UARY	ALL	RMSE = 11.9 ppbv	RMSE = 19.8 ppbv	RMSE = 10.3 ppbv
		MB = 7.3 ppbv	MB = 13.2 ppbv	MB = 3.9 ppbv
	WEST	RMSE = 16.8 ppbv	RMSE = 23.5 ppbv	RMSE = 13.0 ppbv
		MB = 14.6 ppbv	MB = 18.3 ppbv	MB = 9.8 ppbv
	CENTRAL	RMSE = 10.1 ppbv	RMSE = 23.6 ppbv	RMSE = 8.2 ppbv
		MB = 6.6 ppbv	MB = 16.1 ppbv	MB = 2.4 ppbv
	EAST	RMSE = 11.2 ppbv	RMSE = 18.0 ppbv	RMSE = 10.1 ppbv
		MB = 6.3 ppbv	MB = 11.5 ppbv	MB = 3.2 ppbv
JUNE	ALL	RMSE = 14.3 ppbv	RMSE = 16.4 ppbv	RMSE = 13.8 ppbv
		MB = 0.3 ppbv	MB = 7.2 ppbv	MB = 1.9 ppbv
25	WEST	RMSE = 18.3 ppbv	RMSE = 19.9 ppbv	RMSE = 15.2 ppbv
		MB = 4.3 ppbv	MB = 7.2 ppbv	MB = 2.0 ppbv
	CENTRAL	RMSE = 12.5 ppbv	RMSE = 16.0 ppbv	RMSE = 11.3 ppbv
		MB = -4.5 ppbv	MB = 6.1 ppbv	MB = -1.3 ppbv
	EAST	RMSE = 14.1 ppbv	RMSE = 15.9 ppbv	RMSE = 14.1 ppbv
		MB = 1.1 ppbv	MB = 7.6 ppbv	MB = 2.9 ppbv
JULY	ALL	RMSE = 16.3 ppbv	RMSE = 16.6 ppbv	RMSE = 15.8 ppbv
		MB = 4.2 ppbv	MB = 5.3 ppbv	MB = 3.4 ppbv
	WEST	RMSE = 19.8 ppbv	RMSE = 16.9 ppbv	RMSE = 16.9 ppbv
		MB = 4.3 ppbv	MB = 6.0 ppbv	MB = 4.1 ppbv
	CENTRAL	RMSE = 13.7 ppbv	RMSE = 13.7 ppbv	RMSE = 13.3 ppbv
		MB = -2.4 ppbv	MB = -1.4 ppbv	MB = -3.1 ppbv
	EAST	RMSE = 16.4 ppbv	RMSE = 17.3 ppbv	RMSE = 16.3 ppbv
		MB = 6.2 ppbv	MB = 8.1 ppbv	MB = 6.1 ppbv
LL - All statio	ns; WEST - Wes	st of 115W; CENTRAL - Bet	ween 115W and 94W; EAS	F - East of 94W
MSE is root r	mean square erro	or; MB is mean bias		

- **Tropo-BC** always the best
- The most improvement occurred on January
- "WEST" got the largest improvement for all three months, about 3 - 4 ppbv in RMSE
- Minor improvement observed in both
 "CENTRAL"and"EAST"

Summary

- The effects of European/South Asia emissions as CMAQ boundary conditions and Local emissions were demonstrated by the CMAQ simulation results in 36-km regional scale and seasons in this study.
- Significant effects were observed due to local emissions. Also, Higher effect were found at mid-high latitude on both SR3EU&SR6EU cases. Meanwhile, the effects of SR3SA&SR6SA cases do not affect as large area as SR3EU&SR6EU which seems caused by the high terrain.
- The effect is accumulating and transporting with time and seems more significant in April and October (monthly average) than in January and July for the boundary impact, while the local impact are more obvious in July. (seasonal effects)
- The maximum boundary effect on the regional scale is in range from 0-4 ppb. The maximum local effect is between -15 and 9ppb, which is much large than the regional effect and also has obvious VOC and NOx limited appearance.
- In VOC limited areas such as megacities cities Beijing, Shanghai, Tokyo and Seoul, NOx reduction may lead to increase of ozone concentrations, which is hard for global model to catch up due to coarse resolution. It suggests that finer resolution simulations should be conducted to analyze transport effects between transport and regional/local influences.
- Higher ozone concentrations in surface levels could be caused by initial conditions and boundary conditions in vertical downscaling at high altitude (the top layers of regional models) from global models. Fu et al. (CMAS, 2008).

Acknowledgment And Collaboration

- USEPA STAR funding support
- USEPA OAQPS ICAP Project
- Harvard University
- USEPA ORD ASMD
- Goddard Space Flight Center/NASA