Development of a multi-scale Eulerian aerosol chemistry and transport model and its application to transboundary air pollution issues in Asian outflow

Development of a new 3D-CTM to simulate aerosol properties, namely,

- 1. chemical compositions,
- 2. size distributions,
- 3. mixing states,
- 4. shapes,

that alter optical, CCN/IN properties & deposition processes, thus environmental issues.

The model simulated transport of contaminated air-mass in Asian outflow regions.

Mizuo KAJINO (Dr. Sci.) RCAST, Univ. of Tokyo

EMTACS

<An Eulerian, Multi-scale, Tropospheric, Aerosol Chemistry and transport Simulator>

~	Category	1	2	3	4	5	6	7	8	9	10	11	12	Χ	
1	Aitken	M ₀	M ₂	M ₃	Mass	-	-	-	-	SO ₄ ²⁻	NO ₃ -	NH ₄ ⁺	H ₂ O	SOAs	
2	Soot	M ₀	M ₂	M ₃	Mass	BC	OC	-	-	SO ₄ ²⁻	NO ₃ -	NH ₄ ⁺	H ₂ O	SOAs	
3	Multi/unid.	M ₀	M ₂	M ₃	Mass	BC	OC	-	-	SO ₄ ²⁻	NO ₃ -	NH ₄ ⁺	H ₂ O	SOAs	
	accum. mode														
4	Dust	M ₀	M ₂	M ₃	Mass	-	-	Dust	-	SO ₄ ²⁻	NO ₃ -	NH ₄ ⁺	H ₂ O	SOAs	
5	Sea salt	M ₀	M ₂	M ₃	Mass	-	-	-	SS	SO ₄ ²⁻	NO ₃ -	NH ₄ ⁺	H ₂ O	SOAs	
6	Multi/unid.	M ₀	M ₂	M ₃	Mass	BC	OC	Dust	SS	SO ₄ ²⁻	NO ₃ -	NH ₄ ⁺	H ₂ O	SOAs	
	coarse mode														
7	Fog/cloud	M ₀	M ₂	M ₃	Mass	BC	OC	Dust	SS	SO ₄ ²⁻	NO ₃ -	NH ₄ ⁺	H ₂ O	SOAs	
Y	Other hydrometeors	M ₀	M ₂	M ₃	Mass	BC	OC	Dust	SS	SO ₄ ²⁻	NO ₃ -	NH ₄ ⁺	H ₂ O	SOAs	

52 prognostic variables (transport)

Diagnostic variables (equilibrium, met. model)

Future implementation

A modal/moment approach is used as it is computationally efficient

MAD-MS

<Modal Aerosol Dynamics model for multiple Modes and arbitral Shapes>

MAD model (Whitby and McMurry, AST, 1997) is widely used for global/regional models

Spherical particles are assumed, only applicable for intra-modal coagulation, and inter-modal coagulation but difference in the size parameters (D_g , σ) should not be large.

<MAD approach>

log D

Inter-modal: $F^t \times G^t \rightarrow F^{t+\Delta t}$, $G^{t+\Delta t}$

<MAD-MS approach>

Fractal agglomerates: $N_0 = k_f (D_{chr} / d_p)^{D_f}$

MAD-MS

<Modal Aerosol Dynamics model for multiple Modes and arbitral Shapes>

Only Brownian coagulation \rightarrow Turbulence & sedimentation should be implemented in future

Flow chart of calculation

EMTACS driven by global analysis data, NCEP/fnl

Monthly mean sulfate concentration in PBL in Mar 2005 [ppb] 90N WRF/EMTACS 60N -30N -EQa 30S -60S · 905 |- 120E 60E 180 12'0W 6ó₩ 0.6 1.2 1.8 0.1 0.3 0.9 1.5 2.1 2.4

NCEP-FNL/EMTACS used as initial & boundary conc. for regional calculations

Offline coupled Met&Chem, WRF/EMTACS

Horizontal resolution: 60km Vertical resolution: 27 levels up to 12km Temporal resolution: 1 hourly

Topics

- 1. Contribution of boundary SOx on surface sulfate concentration at Gosan.
- 2. Sensitivity of surface O₃ concentration at Gosan to dry deposition parameterization.
- 3. Sensitivity of evolution of size distribution to particle morphology in Asian outflow.

Topic 1. SO_x from outside of North East Asia

95% of sulfate during the event over 10 μ g/m³ is explained by NEA emission.

 $1 \sim 2 \mu g/m^3$ is explained by outside of NEA during low conc. period

Topic 1. SO_x from outside of North East Asia

The contribution of sulfate originated from the boundary SOx on the surface sulfate conc. at Gosan is 16.2% (Mar. 10 to Apr. 10, 2005).

Topic 2. Sensitivity of surface O₃ concentration to dry deposition parameterization in Asian outflow region

1. Wesely's parameterization

Seasonal category 3 5 1 2 4 1 r₁₋₁ r₁₋₂ **r**₁₋₃ **r**₁₋₄ r₁₋₅ 2 r₂₋₁ **r**₂₋₂ **r**₂₋₃ **r**₂₋₄ **r**₂₋₅ 3 r₃₋₂ r₃₋₁ r₃₋₃ r₃₋₄ r₃₋₅ 4 5 6 7 8 9 10 11 r₁₁₋₁ r₁₁₋₂ r₁₁₋₃ r₁₁₋₄ r₁₁₋₅

2. Zhang's parameterization

Some of surface resistances are function of LAI (Leaf Area Index)

Monthly MODIS/LAI

Seasonal category

- 1: Midsummer
- 2: Autumn

Landuse type

- 3: Late autumn
- 4: Winter
- 5: Spring

Difficult to apply to Asia due to its various seasonality (wide range for latitude)

Topic 2. Sensitivity of surface O₃ concentration to dry deposition parameterization in Asian outflow region

Monthly mean dry deposition velocity for O₃ [cm/s]

1. Wesely's parameterization

2. Zhang's parameterization

 V_d for O₃ of Wesely is at most twice as large as Zhang's on land, larger on the ocean as well \rightarrow

Topic 2. Sensitivity of surface O₃ concentration to dry deposition parameterization in Asian outflow region

Topic 3. Significant change in mean diameter of uncoated soot particles, while the mass remains unchanged

Volume-equivalent geometric mean diameters of soot [nm]

Volume-equivalent geometric mean diameters of soot [nm] [IASA, Feb. 26-27, 2009

Surface mass concentration of soot [µg/m³]

Monthly mean volume-equivalent mean diameter of uncoated soot (conc.>0.5ug/m³)

Temporal variation of surface soot concentration at Gosan

BC concentration at Gosan

Conclusions & future plans

- 0. CTM is now being developed to solve aerosol properties that affect environment, such as chemical composition, size distribution, mixing state and shape.
- 1. Boundary conditions affects even for surface <u>sulfate</u> by 15% in Asian outflow region in spring.
- 2. Surface <u>ozone</u> concentration can be altered by dry deposition parameterizations by 10~15 ppb.
- 3. Mean diameter can be changed significantly, considering mass-fractal shape of particles.
- In future...
- 4. Implement secondary organic aerosols
- 5. Link to mixed-phase cloud microphysics & radiation processes