Model intercomparison under HTAP

Kees Cuvelier The TF HTAP Modelling Team

Institute for Environment and Sustainability

MICS, Vienna, 26-27 Feb 2009

While local and regional emission sources are the main cause of air pollution problems worldwide, many air pollutants are transported on a hemispheric or global scale, including:

- Ozone and its precursors
- Fine particles
- Acidifying substances
- Mercury
- Persistent organic compounds

The Task Force on HTAP (UNECE Convention on LRTAP) is conducting a series of multi-model evaluation and intercomparison experiments

- Created in December 2004 by the UNECE Convention on Long-Range Transboundary Air Pollution
- US and EC are the Lead Parties
- To improve the scientific understanding of intercontinental transport and hemispheric air pollution in the Northern Hemisphere.
- Participation is open to all interested experts.
- Focus on the "7 science questions"
- Coordinated model studies to provide harmonized information to the HTAP interim and final reports
- Contribute to the review of protocols to the Convention

Policy-Relevant Science Questions

- 1. How does hemispheric transport affect air pollution?
- 2. How much do emissions in one country or region affect air pollution in another country or region? (SR)
- 3. How confident are we of the results and what is our best estimate of the uncertainties?
- 4. How will changes in emissions in one country or region affect air pollution in another country or region?
- 5. How may the source-receptor relationships change over the next 20 to 50 years due to changes in emissions?
- 6. How may the source-receptor relationships change due to climate change?
- 7. What efforts are needed to develop an integrated system of observation data and models?
- → Call for a model intercomparison study

HTAP Model Overview (1)

NR	MODEL	RESOLUTION	RESPONSIBLE		
01	GEOSChem-v07	144 x 91 x 30	Rokjin Park		
02	MOZARTGFDL-v2	192 x 96 x 28	Arlene Fiore		
03	STOCHEM-v02	96 x 72 x 20	Kirsty Pringle, Michael Sanderson		
04	CAMCHEM-3311m13	144 x 96 x 28	Peter Hess		
05	INCA-vSSz	96 x 72 x 19	Michael Schulz, Sophie Szopa		
06	LLNL-IMPACT-T5a	144 x 91 x 48	Cynthia Atherton, Dan Bergmann		
07	MSCE-HM-v4.5 (NH)	144 x 37 x 8	Oleg Travnikov		
08	MSCE-POP-v2.2 (NH)	144 x 37 x 8	Alexey Gusev		
09	EMEP-rv26 (NH)	360 x 90 x 20	Jan Eiof Jonson, Peter Wind		
10	OsloCTM2	128 x 64 x 40	Michael Gauss		
11	FRSGCUCI-v01	128 x 64 x 37	Oliver Wild		
12	UM-CAM-v01	96 x 73 x 19	Guang Zeng		
13	TM5-JRC-cy2-ipcc-v1	360 x 180 x 25	Elina Marmer		
14	MOZECH-v16	192 x 96 x 28	Martin Schultz, Sabine Schröder		
15	GEOSChem-v45	72 x 46 x 30	Marta Garcia Vivanco		
16	GOCART-v4p1	144 x 91 x 30	Thomas Diehl		
17	GEMAQ-v1p0	180 x 90 x 28	Alexander Lupu		
18	GEMAQ-EC	96 x 72 x 20	Sunling Gong		
19	ULAQ-v03 (v02)	64 x 37 x 28	Veronica Montanaro		
20	SPRINTARS-v356	320 x 160 x 20	Toshihiko Takemura		
21	ECHAM-HAMMOZ-v21	128 x 64 x 31	Gerd Folberth		
22	STOC-HadAM3-v01	72 x 36 x 19	Ian MacKenzie		
23	INCA-v2MS	96 x 73 x 19	Michael Schulz		
24	GISS-PUCCINI-modelE	72 x 46 x 23	Drew Shindell		

HTAP Model Overview (2)

NR	MODEL	RESOLUTION	RESPONSIBLE
25	GISS-PUCCINI-modelA	72 x 46 x 23	Drew Shindell
26	GMI-v02a	144 x 91 x 42	Huisheng Bian
27	GOCART-v4p2	144 x 91 x 30	Thomas Diehl
28	GMI-v02f	144 x 91 x 42	Bryan Duncan
29	HADGEM2-A-v01	192 x 145 x 38	Shekar Reddy
30	CAMCHEM-3514	144 x 96 x 28	Peter Hess
31	GEMAQ-v1p0R1p5x1p5	(only vertprof)	Alexander Lupu
32	CHASER-v03	168 x 64 x 32	Sudo Kengo
33	IFS-CY32R3	320 x 160 x 25	Johannes Flemming
34	GRAHM-1.1	180 x 90 x 28	Didier Davignon
35	EMEPGLOB-rv3	360 x 180 x 20	Jan Eiof Jonson
36	ECHMERIT-V1	128 x 64 x 19	Gerlinde Jung
37	GLEMOS-v1.0	360 x 180 x 20	Oleg Travnikov
38	GFDL-AM3	144 x 90 x 24	Arlene Fiore
39	GISS-PUCCINI-ModelEaer	72 x 46 x 23	Drew Shindell
40	MOZARTGFDL-v4	192 x 96 x 64	Arlene Fiore
41	STOC-HadAM3-v02	72 x 36 x 19	Ian MacKenzie
42	TM5-JRC-cy2-ipcc-v1-glv3x2	360 x 180 x 25	Frank Dentener
43	TM5-JRC-cy2-ipcc-v1-glv6x4	360 x 180 x 25	Frank Dentener
44	TEST	xx – xx - xx	To test your own model

Current defined experiments:

SR: Source-Receptor Emission Sensitivity Studies

- Initially, this set of simulations consisted of a reference simulation (2001) and simulations reducing anthropogenic emissions by 20% in EU, NA, EA, and SA.
- These simulations are defined for reductions of NOx, VOC, CO, Hg, specific POPs, and combined reductions of NOx, VOC, CO, SO2, and aerosols.
- After analysis of these results, additional simulations were defined reducing anthropogenic emissions by 20% globally and zero-ing out anthropogenic, biomass, and dust sources of aerosols, and shipping and aviation emissions.

TP: Tracer and Process Studies

- These experiments are designed to test the transport parameterizations in the models and to allow a meaningful diagnosis why differences occur between the various chemistry transport models.
- The simulations consist of a simple passive tracer experiment with tracers of different lifetimes, pulse studies to examine continental outflow episodes (related to the ES experiment series), and a series of simulations that transition to a realistic CO simulation.

ES: Event Simulations

 These experiments explore the ability to reproduce specific events of intercontinental transport observed during the ICARTT campaign and their impacts on atmospheric composition

FC: Future Climate and Emission Scenarios

• A fourth set of simulations examining the impacts of future changes in emissions and climate are being considered.

VARIABLE	UNITS		DESCRIPTION				
vmr_o3_m24	mole/mole	Monthly mean val	Monthly mean values <u>of the</u> daily mean values (equal to monthly mean)				
vmr_03_m12		Monthly mean ve values	Monthly mean values of the day-time (8H-20H) mean values				
vmr_o3_m7		Monthly mean val mean values.	lues <u>of the</u> re	duced d	ay-time (9H-16H)		
vmr_o3_max		Monthly mean va running averaged	lues of the da concentration	uly max: 15.	ima of the 8-hr	II MA SA CI	
vmr_o3_somo35	(mole/mole) x days	Monthly accumul the 8-hr running a	ated daily cor verage conce	ncentrati ntration	ons of the maxima of in excess of 35 ppb.	E,SW	
vmr_o3_aot40	(mole/mole) x hours	Monthly accumul ppb.	ated hourly co	oncentra	tions in excess of 40		
vmr_o3_aot60	(mole/mole) x hours	Monthly accumul ppb.	ated hourly co	oncentra	tions in excess of 60		
vmr_o3_exc60	days	Monthly number	of days of exc	eedance	s over 60 ppb of the		
vmr o3 sumon	(mole/mole) x hours	Monthly accumul	aged daily ma	oncentra	tions larger than or	eptember	
		equal to 60 ppb.				2004 Jet 2004	
vmr_03_w126	(mole/mole) x hours	Monthly accumul	Monthly accumulated hourly concentrations with the				
		following sigmoid $(1 + 4403 * even$	tal weighting	function $0 * \cap 3$: ∖-1 writh ∩3 in		
		mole/mole (this m	$\{1. + 4403. + exp(-0.120 + 10.9 + 0.3)\}^{2}$, with 0.3 in mole/mole (this means 10^9 * 0.3 is in ppb)		ррb)		
vmr_no2_m24	mole/mole	Monthly mean va monthly mean).	lues of the da	ily mean	values (equal to		
<u> </u>	Ga	as	65	-		_	
	Αε	erosol	12	-			
	De	eposition	58	-			
	Αε	ero-aod	11	-			
	Βι	udgets	6	-	production/	loss	
	Ve	ert Profs	12	-			
	SF	-C	16	_	(or indicato	rs)	

Data base at FZ-Juelich server

• Directories:

DVS: All monthly results of all models, Daily (0,6,12,18 hr) vertical profiles

HOURLY-DAILY: All hourly and daily results (sfc, aod, vertprofs)

DVS_SEP2007: DVS frozen in Sep 2007

HOURLY-DAILY_SEP2007: All hourly and daily results up to Sep 2007

DVS: 175 Gb → <u>Need for a visualisation Tool</u>

HOURLY-DAILY: 400 Gb

HEMITAP Visualization Tool

ENTER

JOINT RESEARCH CENTRE EUROPEAN COMMISSION INSTITUTE FOR ENVIRONMENT AND SUSTAINABILITY C. CUVELIER Copyright 2007-2013 European Commission - JRC-IES Version 2.0 Expiration: 29/1/2013

EXIT

The Tool can be run remotely on the Juelich server

SR: Source-Receptor Emission Sensitivity Studies

The global/hemispheric models ran a series of experiments:

- Year 2001 base case
- -20% global [CH₄]
- -20% regional NO_x, CO, VOC emissions (or all)
- -20% regional Hg, POP

SR1: surface vmr_o3, annual mean, 5 models/page

FILE D_BASE REGION EXP1 -- EXP2 DIAGS STATS PREFS WINnr MODELS

A CONTRACTOR

05 => CAMCHEM-3311m13 [Z=471m asl]

		MIN	MAX
01	GEOSChem-v07:	10.0738	52.5536
02	GEOSChem-v45:	11.6333	53.6240
03:	MOZARTGFDL-v2;	7.73955	49,1203
04	STOCHEM-v02:	3.13568	62.5512
05	CAMCHEM+3311m13:	13.9710	61.3134

0 5 10 15 20 25 30 35 40 45 50 55 80

SR1: VertProf of vmr_o3, De_Bilt (NL), day=120, Time=12H

vmr_o3_exc60: SR2-SR1 (impact of 20% CH4 reductior

							WOZARIC	SFDL-VZ	
	Global	NH	SH	EU	NA	SA	CAMCHE	M-3311m13 z	
Model 01	-1.11625	-2.12024	-0.112270	-6.54866	-3.12102	-8.80369	LLNL-IMPACT-T5a		
Model 02	-1.01347	-1.87848	-0.148459	-4.50001	-3.01541	-9.79700		2	
Model 03	-0.973993	-1.74998	-0.198008	-4.87617	-3.10410	-7.16855	UM-CAM-	v01	
Model 04	-1.63836	-3.17798	-0.0987463	-9.36367	-4.21813	-10.8364	TM5-JRC-	cy2-ipcc-v1	
Model 05	-0.796927	-1.52099	-0.0728596	-4.09890	-2.65286	-5.08874	MOZECH- GEMAQ-v	v16 1p0	
Model 06	-1.93816	-3.34347	-0.532850	-8.68751	-4.06290	-13.1053	GISS-PUC	CINI-modelE	
Model 07	-1.57871	-2.66359	-0.493824	-7.96894	-3.00876	-13.0339	GMI-v02f		
Model 08	-2.17086	-4.08325	-0.258465	-14.7566	-6.24371	-9.26062	-0.54105	-2.17000	
Model 09	-1.09275	-2.10431	-0.0811938	-7.75694	-1.87516	-3.01587	-3.79504	-1.09275	
Model 10	-1.35677	-2.44762	-0.265932	-9.44730	-5.33169	-6.74955	-3.29221	-1.35677	
Model 11	-1.21480	-2.19540	-0.234205	-5.30648	-4.69035	-8.43970	-4.25391	-1.21480	
Model 12	-1.66631	-2.97148	-0.361139	-7.88000	-4.87706	-7.59270	-4.55789	-1.66631	
Model 13	-0.503199	-0.792169	-0.214230	-0.0907736	-0.526155	-6.16189	-1.84439	-0.503199	
Model 14	-1.97204	-3.85789	-0.0861801	-11.7151	-5.82843	-12.6530	-6.19091	-1.97204	
MeanValue	-1.35947	-2.49335	-0.225597	-7.35693	-3.75398	-8.69335	-4.50203	-1.35947	
Stddev	0.484980	0.919463	0.148556	3.58747	1.58176	3.02736	1.52634	0.484980	
and the second se									

14 Models:

GEOSChem-v07

GEOSChem-v45

from: A.M. Fiore et al.

15 model range

Sensitivity of surface O3 to NOx sources during season of maximum domestic O3 production

from: A.M. Fiore et al.

2007 Interim Report

- Focus on Ozone and Aerosols
- http://www.htap.org/activities/2007_interim_report/
- Serves as basis for 2010 Report
- Includes measurement- and model-based analysis

Major Findings (1)

• "Observations from the ground, aircraft, and satellites provide a wealth of evidence that ozone and fine particle concentrations in the UNECE region and throughout the Northern Hemisphere are influenced by intercontinental and hemispheric transport of pollutants."

• "The processes that determine the overall patterns of transport at this scale are relatively well understood and our ability to quantify the magnitude of transport is improving."

Major Findings (2)

• "The HTAP model intercomparison has provided the first set of comparable estimates of intercontinental source-receptor relationships from multiple models."

• "For ground-level ozone, there is a hemispheric background concentration of 20-40 ppb that includes a large anthropogenic and intercontinental component. ...changes in intercontinental transport can have small, but significant, impacts on surface concentrations."

• "For fine particles, the impact of intercontinental transport on surface air quality is primarily episodic, especially associated with major emission events such as fires or dust storms. The intercontinental transport of both ozone and fine particles has large impacts on total atmospheric column loadings, which have significant implications for climate change." The Ensemble-model (or multi-model) approach is a useful tool in the frame of the Harmonisation of the individual model results.

It is often more robust and looks therefore more appropriate for policy purpose

Procedure for MI (cf CityDelta, EuroDelta):

- Analysis of individual Modelling results (Validation against Obs)
- Intercomparison of Modelling results (Central data base)
- Ensemble approach (mean/median of the Models)
- Analysis of the variability around the Ensemble
- Validation of the Ensemble model
- Spin-off: improvement and further development of models

Some Publications:

- A.M. Fiore et al.: Multi-model estimates of intercontinental SR relationships for ozone pollution.
- M.G. Sanderson et al.: A multi-model SR study of the hemispheric transport and deposition of oxidised nitrogen.
- D.T. Shindell et al.: A multi-model assessment of pollution transport to the Arctic.
- J.E. Jonson et al.: A multi-model analysis of vertical profiles.
- S. Casper-Anenberg et al.: Impacts of intercontinental SR relationships for ozone pollution on human mortality
- 2007 Interim Report
- C. Cuvelier: Users guide to the HemiTap visualization Tool

Air Quality Prediction: A Challenge of Scales and Integration

The EuroDelta project

KC, PT, PR, LW, LP, LT, ST, RS, AK, LR, BB, RB, MS, GB, PB

ED Phase I (2003-2005):

 Examination of common performance of Regional AQ models in predicting recent (2000; for validation) and future (2020) AQ in Europe.
 AQ models: CHIMERE, REM, EMEP, MATCH, LOTOS

Investigation of 2020 emission reductions for
NO_x, SO₂, VOC, NH₃, PPM2.5 independently in FR, GE, IT
NO_x and SO_x in sea areas (NS, MS).

• The model Ensemble was used to measure robustness of the predictions.

In the Source-Receptor relationships, emission changes are distributed over all emission sources in proportion to their contribution. This type of SRR is used in the IIASA/RAINS approach to Integrated Assessment (IA).

ED Phase II (2005-2009):

- Study of the impact of emission reductions in individual emission sectors.
- First look at whether there are differences in the impact of emission reductions if they are applied to single sectors compared with all sectors.
- Aims to assess the usefulness of introducing sectoral SRR in IA.
- Total of 70 scenarios for FR, SP, GE, UK, PL, BNL, It, PO and 10 scenarios for the Mediterranean Sea

Emission reduction overview (1)

				Emissions Reductions in ktonnes/year with Percent of Total 2020 Emissions Remaining Shown in Parenthesis				
Scenario	Country	Sectors	Pollutant(s)	NOx	PM2.5	SOx	VOC	NH3
0				BASE CASE 2	020 CLE			
1	France	All	NOx+PM2.5	230 (71.9%)	62 (62.8%)			
2		All	SOx+VOC			110 (68.1%)	150 (83.8%)	
3		SNAP 1	NOx+PM2.5	40 (95.1%)	3 (98.2)			
4		SNAP 1/4	SOx+VOC			40 (88.4%)	30 (96.8%)	
5		SNAP 2	PM2.5		45 (73.0%)			
6		SNAP 3	NOx+PM2.5	100 (87.8%)	2 (98.8%)			
7		SNAP 3/6	SOx+VOC			70 (79.7%)	120 (87.0%)	
8		SNAP 4	PM2.5		10 (94.0%)			
9		SNAP 7	NOx+PM2.5	90 (89.0%)	2 (98.8%)			
10		SNAP 10	NH3					250 (63.8%)
11		Combined	NOx+PM2.5	40/100/90 (71.9%)	3/45/2/10/2 (62.8%)			

Emission reduction overview (2)

51	MED SEA	Base Case 2010 With 2.7% RFO and 0.1% Gasoil
52		Base Case 2010 But 1.5% S On Ferries
53		Base Case 2010 But 0.1% S on all ships at berth in all EU ports
54		Base Case 2020
55		Base Case 2020 With Only 2% Growth
56		Base Case 2020 + Mediterranean as 1.5% SECA
57		Base Case 2020 + 12m limit as 1.5% SECA in EU Inc Gibraltar straits
58		Base Case 2020 + 12m limit as 1.5% SECA in EU Excl Gibraltar straits
59		Base Case 2020 +Aegean Sea alone as a 1.5% SECA
60		Base Case 2020 with 40% NOx Reduction

Report ED II + 3 DVDs

To receive a copy: Let me know

JRC Scientific and Technical Reports

EURODELTA - II

Evaluation of a <u>Sectoral</u> Approach to Integrated Assessment Modelling including the Mediterranean Sea

ba.

P. Tuuri, c.S. C. Cuurilles (editoris) Europeen Contrata ion, Electronate General JRC, Joint Research Centre Institute for Environment and Sustainability 121020 (approx.)(a), taly

P. Roberts, L. White, L. Polist CONCAWS Redevent do Groeceps 165, 8-1160 Generals, Balairos

L. TARPACÓD, S. TARPA. Air Politaion Section Research Depart ment, Nonvegian Neteorological Institute (Spinov P.O. Box 43, Bändem, N-6313 Osto, Konveg.

R. Stern, A. Kerspilbaumer. Free Universität Berlin, instaut für Heteorologie Teoporophisioopul meetiforachung Carl-teorich-Becker Wegi-10, D-12165 Berlin, Germany.

L. Royfl, B. Beschagnet MERIS, institut harianal de l'Environne ment industriel et des Risques Rescuedenserent ALATA, F-66550 (second-andrése), France

R. Bergschöm Sellt – The Swedish Reteord opication of Hydrological institute SE-00176 Specialization, Sweden

M. Solidade, G.A.C. Spectrap, P.J.H. Sullides The Built Environment and General Innotes, Dept. of Air GuarRy and Clamate PolyRes-Riefs, NL-3588TA Utrache, Opplication Innotes

manna

Air Quality Prediction: A Challenge of Scales and Integration

Propagation of the variability of model results → Uncertainty in AQ Policy advice