Intercomparison of two regional chemistry models: WRF-Chem and CMAQ

Meiyun Lin and Tracey Holloway University of Wisconsin-Madison

11th MICS-Asia Workshop, IIASA, Austria

Current Research Projects

Project	Model(s)	Year(s)
HTAP + MICS-Asia (EA)	WRF +CMAQ + MOZART; WRF/Chem + MOZART	2001
Regional inflow / outflow (EA + NA)	WRF/Chem + CAM-Chem	2005, 2006
O ₃ sensitivity to climate (NA)	WRF + CMAQ	2002 +
Hg sensitivity to climate (NA)	WRF + CMAQ	2003, 2004
Energy strategies for climate & AQ (NA)	WRF + CMAQ	2002 +

Current Research Projects

Project	Model(s)	Year(s)
HTAP + MICS-Asia (EA)	WRF +CMAQ + MOZART; WRF/Chem + MOZART	2001
Regional inflow / outflow (EA + NA)	WRF/Chem + CAM-Chem	2005, 2006
O ₃ sensitivity to climate (NA)	WRF + CMAQ	2002 +
Hg sensitivity to climate (NA)	WRF + CMAQ	2003, 2004
Energy strategies for climate & AQ (NA)	WRF + CMAQ	2002 + 3

Current Research Projects

Project	Model(s)	Year(s)
HTAP + MICS-Asia (EA)	WRF +CMAQ + MOZART; WRF/Chem + MOZART	2001
Regional inflow / outflow (EA + NA)	WRF/Chem + CAM-Chem	2005, 2006
O ₃ sensitivity to climate (NA)	WRF + CMAQ	2002 +
Hg sensitivity to climate (NA)	WRF + CMAQ	2003, 2004
Energy strategies for climate & AQ (NA)	WRF + CMAQ	2002 + 4

Motivating questions

- <u>Challenging problem</u>: complex processes occurring at global to local scales, and their strong coupling across scales
- <u>Recent developments:</u> coupling regional and global CTMs
- CMAQ: initially developed for regulatory purpose in the US, for which ground-level ozone is the greatest concern
- WRF-Chem: the coupled climate-chemistry model to address scientific questions

Motivating questions (2)

By comparing WRF-Chem and CMAQ ...

• identify physical and chemical processes missing in the model, or poorly parameterized processes

By comparing WRF-Chem and MOZART ...

• What regional processes can explain the differences between regional and global models?

Evaluation with EANET measurements

Compared with TRACE-P aircraft measurements

11

DC8 Flight 15 on March 27, 2001: Convective Outflow and Stratospheric Influence

TRACE-P DC8 Flight 15

Ozone in Asia: European Enhancement

Ozone in Asia: European Enhancement

Surface

WRF-Chem

ppb

EU Enhancement (cross section at 43° N)

15

EU Enhancement (cross section at 130° E)

Conclusions and future plans

- CMAQ and WRF-Chem show similar ability in reproducing the variations of ground-level ozone from EANET
- WRF-Chem better captures vertical profiles of major species from a TRACEP flight sample, which is intended to examine convective transport and stratospheric influence
- Current version of CMAQ might not be well suited for examining the exchange between the surface and the free troposphere
- Regional model WRF-Chem and global model MOZART show similar pattern for EU enhancement of ozone in Asia, but WRF-Chem exhibits fine scale variations reflecting the impacts of regional processes such as urban titration, land-sea breeze, and topographical circulation

Thank You!

Meiyun Lin (mlin26@wisc.edu) Tracey Holloway (taholloway@wisc.edu)

