Confessions of a Team that did Interdisciplinary Research

Warren Sanderson, Erich Striessnig Wolfgang Schöpp, Markus Amann

Why Confessions?

 Interdisciplinary research is something that many people say they want to do, but few actually admit doing it.

Interdisciplinary Research

"I'M ON THE VERGE OF A MAJOR BREAKTHROUGH, BUT I'M ALSO AT THAT POINT WHERE CHEMISTRY" LEAVES OFF AND PHYSICS BEGINS, SO I'LL HAVE TO DROP THE WHOLE THING."

The GrandPrograms Involved

• Mitigation of Air Pollution (MAG)

• World Population (POP)

Our offspring

Effects on Well-Being of Investing in Cleaner Air in India

Take Home Messages

• Interdisciplinary Research can be done.

• It can be fun.

• It can be productive.

What's in a name?

 Effects on Well-Being of Investing in Cleaner Air in India

- Well-Being
- Cleaner Air

The Model Parents

- GAINS MODEL
- Greenhouse Gas and Air Pollution Interactions and Synergies Model

- SEDIM
- Simple Economic and Demographic Interaction Model

Disciplines

- Energy Systems
- Atmospheric Chemistry
- Epidemiology
- Economics
- Demography

The Offspring's Accomplishments

• "In India, air pollution abatement investments clearly improve well-being."

Organization

- 1. This Introduction
- 2. The GAINS Model Markus Amann
- 3. The SEDIM Model Warren Sanderson
- 4. Putting it all together in a coherent and publishable package Erich Striessnig
- 5. YSSP research Haochen Wang
- 6. Panel Discussion of Future Interdisciplinary Research

Economic Growth in a World of Environmental Constraints

The SEDIM Model

Constraints

- The 20th century was the century of growth.
- The 21st century is going to be the century of constraints.

• How can we think about integrating these constraints into an economic model?

Environmental Constraints

- Challenges posed by global climate change
- economic costs of necessary abatement policies modeling the impact of environmental degradation on human health and productivity
- Challenges posed by energy and natural resource scarcity
- substitution technologies transition to renewable energies

Demographic Constraints

- Challenges posed by unprecedented societal aging in
- some parts of the world
- include realistic demography
- think about how aging societies are different from "stable populations"
- Opportunities generated by favorable age-structure dynamics in others
- How to make the most out of a potential "demographic dividend"?
- How to model the ongoing educational transitions?

Challenges for the Economic Growth Modeler

- Any realistic model of economic growth has to take environmental challenges into account.
 - The constraints will be different in different parts of the world
 - There is enormous uncertainty

Are We Really in Equilibrium

- Many economic growth models assume that we are:
- 1. in equilibrium
- 2. have perfect foresight (or rational expectations)
- 3 and therefore there are no surprises.
- (we know all our environmental problems with certainty today)

Do We Believe This?

 In a world of unanticipated environmental change and unanticipated costs, the assumption of perfect foresight makes no sense.

Out of Equilibrium

• We need a model capable of studying out-ofequilibrium dynamics.

Enter SEDIM

- SEDIM does not assume perfect foresight
- agents are characterized by adaptive, forward looking behavior
- they make use of limited common information on how the economy evolved in the past...
- . . . using this information they "plan ahead" and react to surprises.

One type of output, Y_t, is generated, using a Cobb-Douglas production function

 $Y_t = A_t * L^{\alpha} * K^{1-\alpha}$

Anything that causes economic growth, has to do so by affecting one of these sources:

Lt... Effective Labor

Kt...Capital Stock

At... Total Factor Productivity

(α... Output Elasticity of Labor)

The workforce in SEDIM includes the full information on the population's age- and educational attainment structure

$$L_t = \sum_{a=alfe(t)}^{alfx(t)} POP_{a,t}EU_{a,t}$$

 $alfe(t) \dots age$ of labor market entry in year t $alfx(t) \dots age$ of labor market exit in year t $POP_{a,t} \dots population$ at age a in year t

 $\mathbf{EU}_{\mathbf{a},t}$ number of efficiency units embodied by worker of age a in year t

Capital

- There are two types of capital holders
 - Consumers
 - Corporations and wealthy individuals

Capital

- Consumers have income from labor and from capital assets. They save for life-cycle purposes
- Their goal is to smooth consumption over their lifetime.
- BUT consumers have imperfect foresight.

Corporations

- Corporations and wealthy individuals receive income from capital investments.
- Their income depends on the rate of return to capital.
- They do not save for life-cycle consumption smoothing.

Total Factor Productivity

SEDIM is a model of conditional convergence/divergence characterized by two gaps

a country's "technological gap" with respect to the global technological leader

a country's gap to its own "potential" level of At

Determining factors of a country's "potential", its "backwardness", and the speed of catching-up include rate of capital formation educational attainment level of the workforce population age-structure the interaction of education and age-structure an economy's level of "openness" the quality of political institutions, i.e., corruption, rule of law

Measuring Well-Being

 In our paper in ES&T, we measured well-being using a version of the UN's Human Development Index.

• Erich Striessnig will say more about this in a moment.

Challenge

 Reproducing India's pattern of economic growth as it happened in the past and as it is expected to happen in the future.

• We did this by altering the rate of total factor productivity in a way that was consistent with the policy changes actually observed in India.

Interdisciplinarity

- SEDIM initially contained ideas from two disciplines:
 - Economics
 - Demography
- To do the research on India, we added a third discipline:
 - Epidemiology

The GAINS (Greenhouse Gases - Air Pollutants Interactions and Strategies) model - Applications in Europe and Asia

Markus Amann Program Director Mitigation of Air Pollution and Greenhouse Gases

How has pollution been reduced in Europe?

How has pollution been reduced in Europe?

SO₂ emissions in Western Europe: 1945-2010

Source: IIASA http://gains.iiasa.ac.at

How has pollution been reduced in Europe?

Decoupling between GDP and SO₂ emissions in Western Europe

Source: IIASA http://gains.iiasa.ac.at

GAINS:

A multi-pollutant/multi-effect systems perspective

	PM (BC, OC)	SO ₂	NO _x	VOC	NH ₃	СО	CO ₂	CH_4	N_2O	HFCs PFCs SF ₆
Health impacts: PM (Loss in life expectancy)	\checkmark	\checkmark		\checkmark	\checkmark					
O ₃ (Premature mortality)			\checkmark	\checkmark		\checkmark		\checkmark		
Vegetation damage: O ₃ (AOT40/fluxes)				\checkmark		\checkmark		\checkmark		
Acidification (Excess of critical loads)		\checkmark	\checkmark		\checkmark					
(Excess of critical loads)			\checkmark		\checkmark					
Climate impacts: Long-term (GWP100)	(√)	(√)	(√)	(√)	(√)	(√)	\checkmark	\checkmark	\checkmark	\checkmark
Near-term forcing	\checkmark			\checkmark	\checkmark	\checkmark	(√)	\checkmark	(√)	(√)
Carbon deposition to the Arctic and glaciers	\checkmark									
Origin of PM2.5 - 2009

Origin of PM2.5 - 2009

IIASA's GAINS systems approach for cost-effective emission reduction strategies

There are large international differences in

- emission densities,
- potentials and costs of further measures,
- sensitivities of ecosystems,
- meteorological and climatic conditions, etc.

Policy applications of GAINS

GAINS has been the key scientific tool for

- international environmental agreements, e.g.
 - UN-ECE LRTAP
 - EU air quality and climate policies
- international assessments
 - UNEP
 - IPCC
 - AMAP

The target of the Thematic Strategy on Air Pollution for 2030

Loss in statistical life expectancy

Current legislation 2030: 5 months life shortening

Commission proposal: 67% 'gap closure' in 2030: -50% health impacts compared to 2005

Maximum additional controls: 3.6 months life shortening

Range of future global emissions HTAP/GAINS policy scenarios vs RCP

Source: GAINS model; ECLIPSE V5 scenario

Co-benefits from an air quality perspective

Costs for reducing PM2.5 population exposure in China by 50%

Cost-effective portfolios to improve air quality include measures that also reduce long-lived GHGs

Conclusions

- GAINS provides an integrated management approach for air pollution and greenhouse gases: multi-pollutant/multi-effect, multiple scale, costeffectiveness
- GAINS shapes air quality and climate policies in Europe and Asia, provides focus on co-benefits
- GAINS has a long history of policy applications in Europe

Well-being and the Macro-economic Effects of Investing in Cleaner Air in India

Warren Sanderson^{1,2}, Erich Striessnig^{1,3}, Wolfgang Schöpp¹, Markus Amann¹

¹International Institute for Applied Systems Analysis (IIASA)

²Stony Brook University (SUNY)

³Vienna University of Economics and Business (WU)

Population Association of America 2013 Annual Meeting New Orleans, April 12

Outline

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

The Future of Economic Growth Modeling

- **O** Environmental Constraints
- **2** Demographic Constraints

▲□▶▲□▶▲□▶▲□▶ □ のQで

Environmental Constraints

- Challenges posed by global climate change
 - economic costs of necessary abatement policies
 - modeling the impact of environmental degradation on human health and productivity
- Challenges posed by energy and natural resource scarcity
 - substitution technologies
 - transition to renewable energies

Demographic Constraints

- Challenges posed by unprecedented societal aging
 - Think about how aging societies are different from "stable populations"
- Opportunities generated by favorable age-structure dynamics
 - How to make the most out of a potential "demographic dividend"?
- Include realistic demography!
- How to model the ongoing educational transitions?

Case Study of India

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The SEDIM Model

SEDIM

Simple Economic Demographic Interaction Model

▲□▶▲□▶▲□▶▲□▶ □ のQで

The SEDIM Model

SEDIM

Simple Economic Demographic Interaction Model

- Agents' are characterized by adaptive, forward looking behavior.
- They make use of limited common information on how the economy evolved in the past...
- ... using this information, they "plan ahead"
- They are able to react to "surprises"!
- SEDIM does not assume perfect foresight

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Case Study

Well-being and the Macro-economic Effects of Investing in Cleaner Air in India

PM_{2.5} in India

Main Research Question:

What effect do environmental regulations have on well-being?

- Economic growth in India accompanied by tremendous increases in emission concentration levels.
- Policies aimed at implementing stringent emission standards likely to result in huge health benefits.
- We need a model which can balance the health benefits on the one hand and the economic costs on the other.

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のへで

What is $PM_{2.5}$?

Definition

 $PM_{2.5}$ is particulate matter with a diameter of 2.5 microns or less

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

What is $PM_{2.5}$?

Definition

 $PM_{2.5}$ is particulate matter with a diameter of 2.5 microns or less

• This stuff kills people!

What is $PM_{2.5}$?

Definition

 $PM_{2.5}$ is particulate matter with a diameter of 2.5 microns or less

• This stuff kills people!

- Well documented
 - Pope et. al. (New England Journal of Medicine, 2009) "[a] decrease of 10 μ g per cubic meter in the concentration of fine particulate matter was associated with an estimated increase in mean (\pm SE) life expectancy of 0.61 \pm 0.20 year (P = 0.004)."
 - Brook et. al. (Journal of the American Heart Association, 2010) "overall evidence is consistent with a causal relationship between PM_{2.5} exposure and cardiovascular morbidity and mortality."

Why India?

	Delhi	Mumbai	Kolkata
<i>PM</i> _{2.5}	99	52	73

Table 1 : Ambient concentrations of $PM_{2.5}$ for various cities in 2005 in $\mu g/m^3$. Source: GAINS

Why India?

	Delhi	Mumbai	Kolkata
<i>PM</i> _{2.5}	99	52	73

Table 1 : Ambient concentrations of $PM_{2.5}$ for various cities in 2005 in $\mu g/m^3$. Source: GAINS

The WHO-standard for $PM_{2.5}$ is $10\mu g/m^3$!

PM_{2.5} abatement strategies

Indian Current Legislation (ICL)

- Controls on dust emissions from the power sector and industry accounting for national emissions limit values
- Low sulfur liquid fuels for the residential, commercial and transport sectors
- Slow penetration of improved cooking stoves using biomass
- CNG for buses and three wheelers in urban areas
- Emission limit values for road transport sources up to Euro 4/IV
- Emissions of sulfur from the power sector and industry remain uncontrolled

European Current Legislation (ECL)

EU-legislation

- stationary sources in the power sector and industry (Proposal for the Industrial Emissions Directive)
- transport sources: phasing-in EU legislation up to EURO 6/IV for road transport and up to stage IV for non-road sources

 National legislation on industrial and small combustion sources (if stricter than the EU-wide legislation)

These two policy interventions will be compared to a **no additional-control** (NOC) scenario.

Reform Schedule

Phasing-in (2010-2019)

- gradual implementation of the emission regulations set by the reform
- modeled as the building up of the total necessary abatement capital stock
- Maintenance Phase (2020-2030)
 - abatement capital in place has to be maintained and operated
 - additional costs from new facilities that also have to comply with the new standard

Note: We do not maintain a certain level of $PM_{2.5}$ concentration, but a certain standard of emissions

Costs and Benefits

Cost as fraction of GDP			PM _{2.5}	5 concent	ration	
Year	NOC	ICL	ECL	NOC	ICL	ECL
2010	0.00%	0.15%	0.54%	46	46	46
2015	0.00%	0.15%	0.55%	60	52	38
2020	0.00%	0.15%	0.43%	74	57	30
2030	0.00%	0.12%	0.29%	116	72	31

Table 2 : Cost as a fraction of GDP and $PM_{2.5}$ concentrations (in $\mu g/m^3$) in three scenarios, India, 2010, 2015, 2020, 2030. Source: GAINS

Costs and Benefits

Cost as fraction of GDP			PM _{2.5}	5 concent	ration	
Year	NOC	ICL	ECL	NOC	ICL	ECL
2010	0.00%	0.15%	0.54%	46	46	46
2015	0.00%	0.15%	0.55%	60	52	38
2020	0.00%	0.15%	0.43%	74	57	30
2030	0.00%	0.12%	0.29%	116	72	31

Table 2: Cost as a fraction of GDP and $PM_{2.5}$ concentrations (in $\mu g/m^3$) in three scenarios, India, 2010, 2015, 2020, 2030. Source: GAINS

• In 2005 India spent around 3.8% of GDP on health and 3.23% on education (Source: WDI)

Case Study of India

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Effects of $PM_{2.5}$ in SEDIM

- Effect of mortality
- Effect of morbidity

Effects of *PM*_{2.5} in SEDIM

Effect of mortality

- Each additional 10µg/m³ of PM_{2.5} increases the relative risk of dying at adult ages (>30) by 4%.
 - changes the age- and education structure of the population
 - people adapt their savings behavior
 - changes in the rate of capital formation as well as changes in the population age- and education structure affect the rate of technological change

effect of morbidity

Effects of *PM*_{2.5} in SEDIM

- Effect of mortality
- effect of morbidity
 - Each additional $10\mu g/m^3$ of $PM_{2.5}$ increases the number of work-loss days by 0.046 (Source: Hurley et. al. 2005)
 - affects the effective labor force

Results: GDP

	YEAR	NOC	ICL	ECL
Total GDP (in Billions)	2010	4.96	1.000	1.000
	2015	7.16	1.000	1.001
	2020	9.90	1.000	1.003
	2030	16.79	1.001	1.007

Table 3 : Total GDP, GDP per capita, and GDP per worker in three scenarios, India, 2010, 2015, 2020, 2030. Notes: NOC in 2000 international US\$. Numbers in ICL and ECL relative to NOC.

Results: GDP

	YEAR	NOC	ICL	ECL
	2010	4.96	1.000	1.000
Total GDP	2015	7.16	1.000	1.001
(in Billions)	2020	9.90	1.000	1.003
	2030	16.79	1.001	1.007
	2010	4073	1.000	1.000
GDP per	2015	5514	1.000	1.001
Capita	2020	7200	0.999	1.000
	2030	11135	0.996	0.995

Table 3 : Total GDP, GDP per capita, and GDP per worker in three scenarios, India, 2010, 2015, 2020, 2030. Notes: NOC in 2000 international US\$. Numbers in ICL and ECL relative to NOC.

Results: GDP

	YEAR	NOC	ICL	ECL
	2010	4.96	1.000	1.000
Total GDP	2015	7.16	1.000	1.001
(in Billions)	2020	9.90	1.000	1.003
	2030	16.79	1.001	1.007
	2010	4073	1.000	1.000
GDP per Capita	2015	5514	1.000	1.001
	2020	7200	0.999	1.000
	2030	11135	0.996	0.995
	2010	6713	1.000	1.000
GDP per	2015	8849	1.000	1.001
Worker	2020	11392	0.999	1.001
	2030	17308	0.999	1.002

Table 3 : Total GDP, GDP per capita, and GDP per worker in three scenarios, India, 2010, 2015, 2020, 2030. Notes: NOC in 2000 international US\$. Numbers in ICL and ECL relative to NOC.

Results: Consumption

	YEAR	NOC	ICL	ECL
	2010	3065	1.000	1.000
Consumption	2015	4291	0.998	0.993
per Capita	2020	5702	0.997	0.993
	2030	9213	0.995	0.992

Table 4 : Forecasted consumption per capita and $PM_{2.5}$ concentration in three scenarios, India, 2010, 2015, 2020, 2030. Notes: Consumption per capita in NOC in 2000 international US\$. Consumption in ICL and ECL relative to NOC.

Results: Consumption

	YEAR	NOC	ICL	ECL
	2010	3065	1.000	1.000
Consumption	2015	4291	0.998	0.993
per Capita	2020	5702	0.997	0.993
	2030	9213	0.995	0.992
	2010	46	46	46
	2015	60	52	38
r IVI _{2.5}	2020	74	57	30
	2030	116	72	31

Table 4 : Forecasted consumption per capita and $PM_{2.5}$ concentration in three scenarios, India, 2010, 2015, 2020, 2030. Notes: Consumption per capita in NOC in 2000 international US\$. Consumption in ICL and ECL relative to NOC.

Results: Longevity

	YEAR	NOC	ICL	ECL
	2010	70.5	70.5	70.5
Life Expectancy at	2015	71.8	72.0	72.5
Birth	2020	72.9	73.5	74.4
	2030	74.9	76.2	77.7

Table 5 : Life expectancy at birth and lives saved for three different scenarios, India, 2010, 2015, 2020, 2030. Notes: "Lives saved" refers to the difference in the number of people dying in that year in the respective scenario and NOC
< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Results: Longevity

	YEAR	NOC	ICL	ECL
Life Expectancy at Birth	2010	70.5	70.5	70.5
	2015	71.8	72.0	72.5
	2020	72.9	73.5	74.4
	2030	74.9	76.2	77.7
Annual Averted Deaths in 1000s	2010	0	0	0
	2015	0	179	462
	2020	0	423	1106
	2030	0	1212	2527

Table 5 : Life expectancy at birth and lives saved for three different scenarios, India, 2010, 2015, 2020, 2030. Notes: "Lives saved" refers to the difference in the number of people dying in that year in the respective scenario and NOC

Political implications

• In India investments in reducing $PM_{2.5}$ will have no discernible effect on GDP growth

- In India investments in reducing $PM_{2.5}$ will have no discernible effect on GDP growth
- The large increase in longevity outweighs the small decreases in the mean level of educational attainment and GDP per capita

- In India investments in reducing $PM_{2.5}$ will have no discernible effect on GDP growth
- The large increase in longevity outweighs the small decreases in the mean level of educational attainment and GDP per capita
- Well-being is higher than in the NOC in both the ICL and the ECL scenario

- In India investments in reducing $PM_{2.5}$ will have no discernible effect on GDP growth
- The large increase in longevity outweighs the small decreases in the mean level of educational attainment and GDP per capita
- Well-being is higher than in the NOC in both the ICL and the ECL scenario
- Policies aiming at reducing *PM*_{2.5} in India increase well-being and almost pay for themselves

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

THANK YOU!

Contact erich.striessnig@wu.ac.at

How does economic growth take place in SEDIM?

• One type of output, Y_t , is generated, using a Cobb-Douglas production function

$$Y_t = A_t * L_t^{\alpha} * K_t^{1-\alpha} \tag{1}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

- \Rightarrow Anything that causes economic growth, has to do so by affecting one of these sources:
 - L_t ... Effective Labor
 - K_t ...Capital Stock
 - A_t ... Total Factor Productivity
 - $(\alpha...$ Output Elasticity of Labor)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Effective Labor, L_t

The workforce in SEDIM includes the full information on the population's age- and educational attainment structure

$$L_t = \sum_{a=alfe(t)}^{alfx(t)} POP_{a,t} * EU_{a,t}$$
(2)

 $alfe(t) \dots$ age of labor market entry in year t $alfx(t) \dots$ age of labor market exit in year t $POP_{a,t} \dots$ population at age a in year t $EU_{a,t} \dots$ number of efficiency units embodied by worker of age a in year t

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

- Consumers
- Orporations or "wealthy individuals"

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Consumers
 - Income from labor and from capital assets
 - Save for life-cycle purposes
 - goal is to smooth consumption over their entire lifetime
 - BUT: suffer from imperfect foresight
- Orporations or "wealthy individuals"

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

- Consumers
- Orporations or "wealthy individuals"

- Consumers
- Orporations or "wealthy individuals"
 - Receive income from capital investments
 - Non-life-cycle savers
 - investment rate depends on rate of return to capital

Two types of capital holders

- Consumers
- Orporations or "wealthy individuals"

The savings/investments of consumers and corporations interact to "buffer" the effect of aging.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Total Factor Productivity, A_t

SEDIM is a model of conditional convergence/divergence characterized by two gaps

- a country's "technological gap" with respect to the global technological leader
- 2 a country's gap to its own "potential" level of A_t

Determining factors of a country's "potential", its "backwardness", and the speed of catching-up include

- rate of capital formation
- educational attainment level of the workforce
- population age-structure
- the interaction of education and age-structure
- an economy's level of "openness"
- the quality of political institutions, i.e., corruption, rule of law

Results: HDI

・ロト・西ト・モート ヨー シタウト