Optimal localisation of next-generation biofuel production integrated in Swedish forest industry

Wetterlund E^{a,*}, Pettersson K^b, Lundmark R^a, Lundgren J^{a,**}

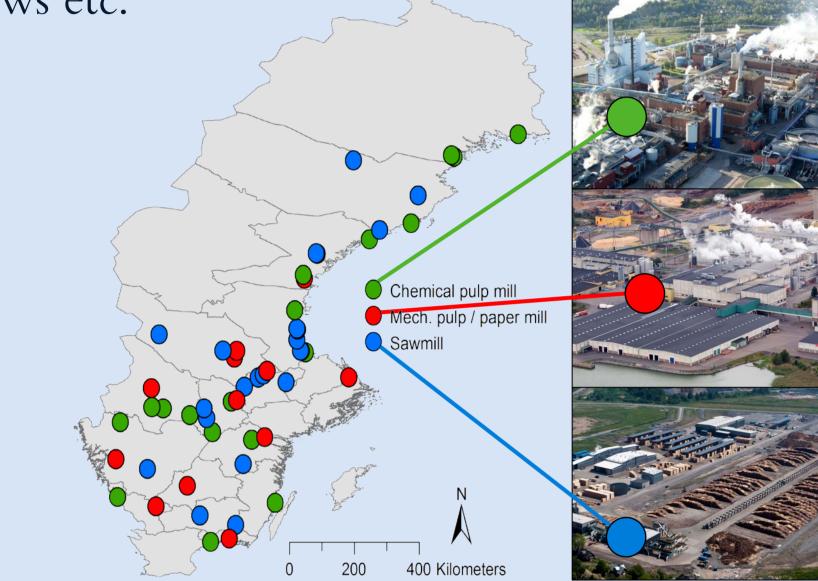
^a Luleå University of Technology, ^b Chalmers University of Technology

- Corresponding author: elisabeth.wetterlund@ltu.se, +46 920 491056
- ****** Presenting author: joakim.lundgren@ltu.se, +46 920 491307

Background

- High availability of forest biomass in Sweden interesting for large-scale production of next-generation biofuels.
- Feedstock supply chain challenges related to large plant sizes, competition from other sectors, and transport distances.
- Co-location with forest industry enables high total conversion efficiency

BeWhere Sweden


- Techno-economic geographically explicit optimisation model.
- Analysis of optimal locations and properties of next-generation biofuel production facilities.
- Focus on integrated biofuel production and forest biomass
- Detailed bottom-up studies of integrated fuel production included in

and benefits related to feedstock handling and industrial know-how.

top-down model.

Integration in forest industry

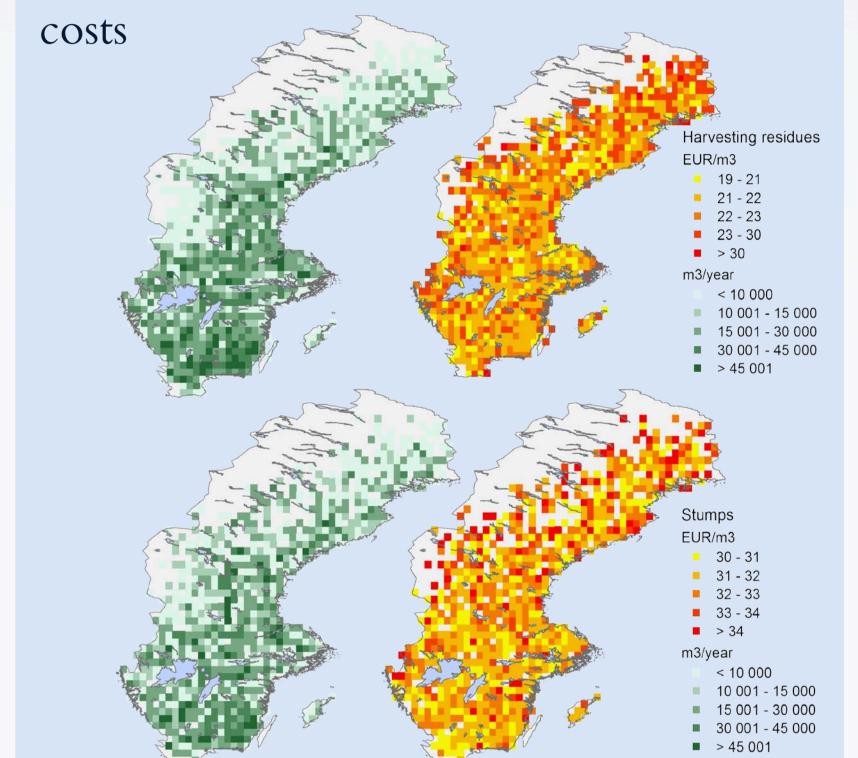
Site-specific conditions and data regarding production, internal energy flows, by-product flows etc.

Biofuel production technologies

1	1
9	1. 3

• Black liquor gasification (BLG)

Energy market parameters


• Energy carrier costs and prices • Policies (carbon tax, green electricity certificates, biofuel tax reduction)

> **Cost minimisation of** the full supply chain to meet targets for overall forest based biofuel use in Sweden

> > ere

Biomass resources

Bottom-up approach for modelling future forest biomass harvesting potentials and

with DME production

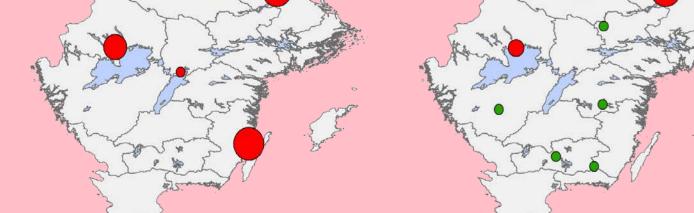
• Biomass gasification (BMG) with DME or SNG production • Hydrolysis and fermentation to lignocellulosic ethanol

Techno-economic parameters

• Costs for investment and operation • Production efficiency • Incremental costs and net energy balances compared to investment in conventional technology

Transportation

- Road, rail network
- Transportation costs for biomass and biofuels


Competing biomass use

Existing and projected future biomass use in	TWh/y Sawlogs
industry and energy sector	< 0.250.25 - 0.5
Sawlogs Pulp wood Bioenergy	0.50 - 1.0 1.0 - 2.0 2.0 Pulp wood < 1.0 1.0 - 2.5
	 2.5 - 5.0 5.0 - 7.5 > 7.5 Bioenergy < 0.10 0.10 - 0.2
	0.25 - 0.5 0.50 - 1.5 > 1.5

Example of results Target: 10 TWh next eneration biofuels Biofuel prod. (TWh/y) Black liquor gasification - DME < 0.5 0.5 - 1.0

Conclusions

This study identifies parameters of high significance for optimal host industries for integrated biofuel production. Since there is a large variance between different industries of the same type, the results show the advantage of including site-specific considerations in this type of energy systems model.

Optimal pulp mills for BLG based DME production:

• Low specific investment cost • Low net biomass

transport cost

Optimal sawmills for BMG based SNG production :

0.5 - 1.0

Biomass gasification - SNG (sawmill)

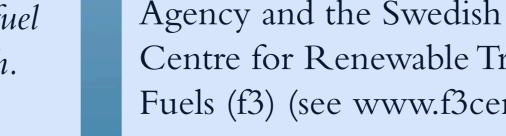
• Large production of sawn goods and byproducts \rightarrow Low net biomass transport cost

BeWhere Sweden considers the entire biomass to biofuels supply chain in a geographical context. The model is used to for example test the implementability of policy targets for biofuels and other biomass use. It complements more aggregated overall energy systems models.

Acknowledgement

This poster is the result of a project within the Renewable fuels and systems program, financed by the Swedish Energy Agency and the Swedish Knowledge Centre for Renewable Transportation Fuels (f3) (see www.f3centre.se).

More information


www.ltu.se/bewhere www.iiasa.ac.at/bewhere

LULEĂ UNIVERSITY -OF TECHNOLOGY

Source

Pettersson K, Wetterlund E, et al. (2015), Integration of next-generation biofuel production in the Swedish forest industry – A geographically explicit approach. Applied Energy 154, pp. 317-332.

