

Optimal Resource Allocation: Food-Water-Energy nexus and the role of uncertainty

Elena Rovenskaya rovenska@iiasa.ac.at

Director, Advanced Systems Analysis Program, International Institute for Applied Systems Analysis, Laxenburg, Austria

Part 1: Food-Water-Energy nexus

Different sectors rely on water

Source:

http://theconversation.com/energy-sector-is-one-of-the-largest-consumers-of-water-in-a-drought-threatened-world-59109

Sectors compete for water!

Water requirements of energy sector

Future trends

Under growing population and demand, water consumption increases

Future trends

Source: Igor A, Shiklomanov, State Hydrological Institute (SHI, St. Petersburg) and United Nations Educational Scientific and Cultural Organisation (UNESCO, Paris), 1999.

Humanity approaches planetary boundaries

Geographical heterogeneity

Water needs are different in different locations

Figure 11: Average irrigation requirement for different irrigation strategies and crop regions.

Figure 12: Average yield for different irrigation strategies and crop regions (given as relative yield to irrigation strategy S0).

Source: Water Requirements for Irrigation in the European Union, JRC Scientific and Technical Report, 2008

A rational decision maker would attempt to make use of competitive advantages of regions

Food-water-energy nexus

- Currently decisions are often made in an un-coordinated way
- Synergies and tradeoffs between agri-food and energy sectors for water, land and other natural resources/ecosystem services to be found

Questions?

Part 2: Using models to support policy decisions

Systems Analysis

... is the art of using models for assisting in making decisions

A model is a simplification of reality – useful for:

- ♦ Explain
- ♦ Guide data collection
- ♦ Illuminate core dynamics
- ♦ Suggest dynamical analogies
- Discover new questions
- ♦ Promote a scientific habit of mind
- ♦ Bound (bracket) outcomes to plausible ranges
- ♦ Illuminate core uncertainties
- ♦ Offer crisis options in near-real time
- ♦ Demonstrate tradeoffs/ suggest efficiencies
- ♦ Challenge the robustness of prevailing theory through perturbations
- ♦ Expose prevailing wisdom as incompatible with available data
- ♦ Train practitioners
- ♦ Discipline the policy dialogue
- ♦ Educate the general public
- ♦ Reveal the apparently simple (complex) to be complex (simple)

Models

- o Descriptive
- o Graphical
- o Mathematical
- Statistical
- o Gamification

0

Straightforward causality	Organized complexity	Disorganized complexity
Laws of classical physics	Systems analysis	Statistics

How models can be used to support decisions?

Reality

Model = artificial reality

How models can be used to support decisions?

Test pre-defined options/scenarios

Simulations

Options/scenarios to be developed, in e.g., a participatory exercise

Limited to the currently considered alternatives

Derive "optimal" solutions

Optimization

Possible to discover a new solution not considered before

Feasibility to be checked

Optimization models

X Vector of decisions

Vector of parameters

F(x, p) Objective function

$$F(x,p) \rightarrow \min$$
 $x \in X$

Equivalent to: $-F(x, p) \rightarrow \max$ $x \in X$

Questions?

Part 3: Linear optimization: Basic introduction

Linear optimization: A two-crop example

Leonid Kantorovich and TC Koopmanns

Nobel Prize 1975 winners for their contribution to the field of optimal resource allocation

- both were affiliated with IIASA in 1970s

More constraints within this framework

- Availability of land
- Availability of labor
- Soil type and productivity
- Fertilizers
- Water pollution
- Diversity of crops
- Rotation of crops
- Trade
-

Questions?

Part 4: Example of application:

Optimal land and water allocation between agriculture and coal mining in Shanxi, China

Motivation

- Coal is a major element of the energy security in China
- Coal mining tends to concentrate in water scarce regions, Shanxi province is a profound example
- Shanxi province is rich in coal (40% of the national reserve; produces 25% of total coal in China)
- Coal-bearing area occupies ~40% of the total area
- Only 30% of the arable land is irrigated, yields largely depend on rainfalls
- ~30% of basic food is imported from other provinces
- Coal mining and arable land overlap by up to 40%

Water availability across Shanxi Province in 1994-2012

Strong competition between agrifood production and coal production for land and water

Model sketch

Optimal resource allocation model

- Calibrated based on 2012 data
- Redistributes production of major crops and coal across
 11 prefectual cities
- Minimizes the total costs, including transportation between cities
- Illuminates and quantifies the tradeoffs between the coal and agriculture sectors
- Analyzes the dependence of an optimal solution to the water availability scenario
- Estimates the shadow prices

Modeling results: Redistribution of coal production

Modeling results: Redistribution of crop production

Modeling results: Tradeoffs and sensitivity to water availability

HWA/LWA/AWA assumes the maximal/minimal/average observed water availability in each city over 1994-2012

Questions?

Part 5: Example of application:

Effectively controlling Phosphorus emissions from agricultural fields around Lake Erie

Eutrophication impacts

Excessive richness of nutrients in a lake or other body of water, frequently due to run-off from the land, which causes a dense growth of plant life

Source: http://www.theguardian.com/world/2014/aug/03/toledo-water-pollution-farming-practices-lake-erie-phosphorus

Case study: Western Lake Erie basin

Maumee River watershed

Lake Erie total P loads from external sources

From rainfalls and snowmelt moving over and through the ground

A dynamic Phosphorus management model

Phosphorus in surface waters

 $\max_{\delta_t, heta_t, F_t}$

$$\mathbb{E}\left[\sum_{t=1}^{\infty}\beta^{t}\sum_{i}\delta_{t}^{i}\pi_{t}^{i}\left(\delta_{t},\theta_{t},F_{t}\right)\right]$$

Objective: maximize expected agricultural profits

$$S_{A}(t) = \zeta_{1}S_{A}(t) + \tau_{A}M_{t-1}$$

$$-S_{A}(t-1)\sum_{i}\delta_{t-1}^{i}\gamma_{A}^{i}(\omega)\left[(1-c_{A})\theta_{t-1}^{i} + (1-b_{A}R_{t-1}^{i})(1-\theta_{t-1}^{i})\right]$$

$$-\phi_{A}S_{A}(t-1) + \phi_{S}S_{S}(t-1)$$

$$S_{A}(t) = \zeta_{A}S_{A}(t-1) + \zeta_{B}S_{S}(t-1)$$

$$\begin{split} S_{\mathrm{S}}(t) &= \zeta_{2} S_{\mathrm{S}} + \sum_{i} \delta_{t-1}^{i} F_{t-1}^{i} + \tau_{\mathrm{S}} M_{t-1} - \sum_{i} \mu_{i} Y_{t}^{i} \\ &- S_{\mathrm{S}}(t-1) \sum_{i} \delta_{t-1}^{i} \gamma_{\mathrm{S}}^{i}(\omega) \left[(1-c_{\mathrm{S}}) \, \theta_{t-1}^{i} + \left(1 + b_{\mathrm{S}} R_{t-1}^{i} \right) \left(1 - \theta_{t-1}^{i} \right) \right] \\ &+ \phi_{\mathrm{A}} S_{\mathrm{A}}(t-1) - \phi_{\mathrm{S}} S_{\mathrm{S}}(t-1) \end{split}$$

 $\mathbb{P}\left(E_{s,t}^{A} \le P_{A}^{*}\right) \ge \rho_{A}$ $\mathbb{P}\left(E_{s,t}^{S} \le P_{S}^{*}\right) \ge \rho_{S}$

Probabilistic environmental constraint: Risk to exceed certain P emission levels into surface water should be limited

A dynamic Phosphorus management model

2-stage stochastic optimization framework with

- Ex-ante strategic decisions (P application, etc.)
- Ex-post recourse action in case environmental constraint is violated

Main result:

Tradeoff between the probability of violating the constraint and the tightness of the constraint

Questions?

