

Using Remote Sensed Data to Predict Residential Electricity Demand in Kenya

Simone Fobi^{1*}, with Terence Conlon¹, Jay Taneja² and Vijay Modi¹

- ¹ Quadracci Sustainable Engineering Lab, Mechanical Engineering, Columbia University, NYC, USA
- ² STIMA Lab, University of Massachusetts, Electrical & Computer Engineering, Amherst, USA
- * Corresponding author: sf2786@columbia.edu

Research Questions

- R1. How has electricity demand of individual households grown over time in Kenya?
- R2. What visual information in satellite images correlates with electricity demand?
- R3. How well can we classify electricity consumption from satellite images?

Data: 6 years of monthly consumption for 135K customers

Experience vs Connection date

Spatial distribution by urbanization level

R1. Consumption Highlights

- i. Consumption grows with experience.
- ii. Recently electrified customers are reaching steady-state more quickly than previous customers.
- iii. The steady-state consumption is increasingly less.
- iv. Urban customers use 50 % more electricity than rural counterparts.

Overall Trend

Rural Trend

R3. Demand Prediction

into electricity planning.

ii. Support selection of

i. Incorporate demand estimates

electrification technology (grid vs

iii. Optimize system design &

R2. Visual Features in satellite images correlated with Demand

- i. Growth in volume and frequency of satellite imagery.
- ii. Economic development visible in images (i.e. buildings, roads).
- iii. Economic development is correlated with electricity consumption.

Objectives

Identify the relevant features from satellite imagery using data driven techniques.

Quantify the value of satellite imagery in Demand Prediction.

Cycle Generative **Adversarial Network** (cycleGAN)

Model converts image of low consumption region to that of a highconsumption region and vice-versa.

i. Individual building prediction.

iii. Evaluate impact of demand on

sizing.

standalone).

Future Work & Implications

- ii. Incorporate nodal demand into electrification planning.
- technology choice selection.

Acknowledgements

Thanks to Carl Vondrick for his computer vision support. Thanks to Rockefeller Foundation for funding COLUMBIA our work.

