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/ 1. Introduction: the Urban water-energy nexus \
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Research questions:

1) How do cities feature in the water-energy nexus? What linkages are relevant /n cities,
and what linkages are relevant for cities?

2) What are the nature and the magnitude of water-energy linkages in cities?
3) How do these linkages affect the dynamics of urban water and energy use?

4) How can cities become fully and globally sustainable in terms of water and energy and
\ support a still-growing world population?

Box 1. Characteristic intensities of the water-energy nexus
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The dual axes are both logarithmic and one is the inverse of the other. The circles indicate central estimates and the lines denote ranges.
The top panel lists water intensities of technologies in the upstream component of the energy system, from Spang et al. (2014). The
middle panel shows energy intensities of end uses involving water and energy. The bottom panel contains energy intensities of
technologies in the upstream and downstream components of the water system. Data in both bottom panels from Plappally & Lienhard V
(2012). Abbreviations: ST = steam turbine; CC = combined cycle; GT = gas turbine; PV = photovoltaic, CT = cooling tower
(recirculating); OTF = once-through freshwater; CP = cooling pond; AIR = dry cooling, WW = wastewater, WWT = WW treatment.

-

-

J

2. Dynamics: causal loop diagram (London)
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3. Dynamics: stock-and-flow diagram, core end-use
structure
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[resource] [end use] ion per capita is the actual volume (of water) or
energy used per person per day for the particular end use, e.g. litres of water for hot water
uses such as showering
can change through @ price-induced change in consumption; @3 linked-resource-induced
change in consumption; ) change in resource consumption through substitution
[resource] demand [end use] service per capita is expressed in the same units as the
consumption per capita, and its initial value is identical to the initial value of consumption.
However, if the service efficiency increases, the service per capita will be greater than the
consumption. The service demand indicates the equivalent amount of consumption in a
reference year (which is chosen as the initial year of the simulation).
[resource] [end use] efficiency is the efficiency with which consumption of the resource
translates into actual service i.e. equivalent reference-year consumption.
[resource] [end use] efficiency max is the maximum obtainable service efficiency for the
resource in question. It is a stock to allow for changes over time e.g. as a consequence of
technological progress.
[resource] [end use] efficiency addition is the net change in efficiency which is required
(or available, if the required change is not possible due to the maximal efficiency limit) to
maintain the service level per capita in response to a resource-induced change in consumption.

End-use interactions
4a. Results: London decrease projected water
use and infrastructure
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4b. Results: Mumbai »
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5. Expansion of exstng sctyre
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