

SHERPA-City: a web-tool to assess the impact of traffic measures on NO₂ pollution in cities

Bart Degraeuwe, Enrico Pisoni, Philippe Thunis

Bratislava, 27 November 2019

Content

- The NO₂ problem in cities
- Possible measure
- A web-tool to asses the impact of traffic measures
 - Methodology
 - Interface
 - Application
- Current status
 - Madrid workshop
 - Future improvements

The NO₂ problem in cities

• 86% of exceedances of the annual average NO_2 limit value $(40 \, \mu g/m^3)$ occur at traffic stations

NO₂ is an urban traffic problem

Source: NO₂ annual average in 2017 from EEA, Air quality in Europe – 2019 report

What can cities do?

- Access regulations:
 - Milan Area B and C: combination of congestion charge and low emission zone (bans of older vehicles).
 - German 'Umweltplakette'
- Promote public transport, walking, biking...

How to evaluate the impact of measures?

SHERPA-city web-tool: main features

- Available for free after registration at:
 - https://integrated-assessment.jrc.ec.europa.eu/sherpacity/
- Default road network with traffic flows available.
- Default emission factors of the national vehicle fleets available for historic years (until 2016) and projections (2020 and 2025).
- Dispersion kernels based on local meteorology for fast concentration calculations.
- Background NO₂ concentration due to other sources (industry, residential, shipping,...) from EMEP and CHIMERE.
- Possible to define fleet restrictions and traffic reductions in user defined areas.
- Visualization of the results.

SHERPA-city workflow (1)

Select your domain

SHERPA-city workflow (2)

- Define Low Emission Zones
- Modify roads and traffic flows

SHERPA-city workflow (3)

- Define fleet restrictions per:
 - Road type
 - Vehicle type
 - Fuel
 - Euro norm
- Define traffic flow reductions or increases.

SHERPA-city workflow (4)

 Visualization of the results in absolute concentrations at as difference with the baseline.

SHERPA-city: Warnings

- The default data have to be checked carefully against local information:
 - ⚠There can be big differences between the real traffic flows and the default flows in SHERPA-City.

 - ⚠The default background concentration might differ significantly from the actual background and should be checked against local measurements.

Application: Urban NO₂ Atlas

- Fact sheet for 30 cities with:
 - City map with inner area
 - Local measurements
 - Source apportionment for the average NO_X concentration in the central area
 - NOx emissions of passenger cars per fuel (diesel or gasoline) and Euro norm
- Available here!

SHERPA-City: details on the methodology

Bart Degraeuwe, Enrico Pisoni, Philippe Thunis

Bratislava, 6 December 2019

Content

- The input data
 - The road network and traffic
 - The fleet composition and emissions
- From emissions to concentrations
 - Dispersion kernels
 - Including NO_X from other sources
 - From NO_X to NO₂

Traffic input: Road network and traffic

- The road network is the one from OpenStreetMap
- Traffic flows come from OpenTransportMap (http://www.opentransportmap.info/)
 - Traffic flow expressed in Annual Average Daily Traffic (AADT), estimated with Omnitrans (traffic model)
 - Road capacity provided.
- Problems:
 - Total vehicle kilometers based on AADT and capacity do not match the national totals.
 - Clearly unrealistic traffic allocation (e.g. traffic through center instead of ring road)

Traffic input: scaling OTM

- AADT underestimates traffic (~50%)
- The road capacity overestimates (~300%)
- Both are scaled to the GAINS national totals

Traffic input: OTM gap filling

- OTM only gives traffic on function road classes main (highway),
 first and second (major roads) and third (urban) but not on
 fourth class (smaller urban)
- Correlation between road class and AADT. (A bit fuzzy, I admit.)
 - Fixed percentage decrease in traffic when increasing class

Traffic input: other solutions

- Upload your own traffic data.
- Future collaboration with Google (?). Their data would be a good proxy to distribute national totals.
 - Status: first teleconference, maybe we get some data for a few cites participating in the Covenant of Mayors (CoM)

Fleet input: EMISIA data

- JRC bought data from EMISIA (developers of the COPERT software)
 - Coverage: EU30
 - Years: historical data until 2016.
 - Projections with Sybil for 2020 and 2025
 - Updates: historical data for 2017 (end 2019) and 2018 (end 2020)
- Remarks:
 - These data cannot be shared at the most disaggregated level (e.g. emissions or vehicle kilometers for medium Euro 6 diesel cars)

Fleet input: EMISIA data

 Share of passenger cars complying with each Euro norm per country in 2020

Country

Fleet input: EMISIA data

 Vehicle kilometers and emission factor of diesel and gasoline passenger cars complying different Euro norms. The surfaces correspond to total emissions.

Emissions to Concentrations: Kernels

- Weather data → dispersion kernel
 - Yearly average concentration of an inert (within the kernel extent) pollutant (NOx, PM2.5) around a unit point source.
 - 4 by 4 km, 20 by 20 meter resolution
 - Produced with the IFDM Gaussian dispersion model

Kernel maximum concentrations

E2C: Including NO_x from other sources

- The kernels give the traffic contribution to NOx only.
- Avoid double counting:
 - Total high resolution NOx = total low resolution <math>NOx low resolution local contribution + high resolution local contribution
- A background concentration is needed from:
 - A CTM basecase (EMEP or CHIMERE, both implemented)
 - A CTM run without traffic (EMEP, not implemented)
 - Measurement (not implemented)
 - User defined (not implemented)

E2C: problems with NO_X background

- CTM background
 - CTM might underestimate total NOx → negative high resolution NOx concentrations
 - CTM might overestimate total NOx → share of traffic is underestimated.
 - Both cases occur.
- CTM run without traffic
 - Can still under or overestimate the background
 - Slightly higher tendency for underestimation (also the traffic outside the domain is zero)

E2C: problems with NO_X background

- From measurements: Rural-Near_city minus Urban background
 - Almost never available
 - Depending on the choice of stations

E2C: From annual average NO_X to NO₂

- Annual average NO_X has to be split up in NO and NO₂
- SHERPA-city uses a Romberg-like correlation fitted on the split predicted by the CTM (EMEP or CHIMERE)
- The NO_2 fraction decreases with increasing NO_X concentration but models underestimate this sensitivity.

Application: NO₂ Atlas (Madrid)

• Source apportionment for the NO₂ concentration in a LEZ.

Application: NO₂ Atlas (Stockholm)

