Markus Amann International Institute for Applied Systems Analysis (IIASA)

The UNEP/WMO
Integrated Assessment of
Black Carbon and
Tropospheric Ozone

39th Meeting of the Task Force for Integrated Assessment Modelling Stockholm, February 23-25, 2011

Co-control of GHGs and air pollutants

Annex I parties of UNFCCC, 2020

Low carbon strategies have significant co-benefits on human health - in Europe and in Asia

Low CO₂ strategies result in

- less SO₂, NO_x and PM emissions,
- lower damage to health and vegetation from reduced air pollution,
- cost savings for air pollution control equipment, compensating for up to 40% of GHG mitigation costs.

CO₂ emissions vs. health impacts (YOLLs)

Control of CO₂ is unlikely to reduce temperature increase in the near-term

Global temperature 1900-2070

Source: UNEP Black Carbon Assessment, forthcoming 2011

Reference scenario:

IEA World Energy Outlook 2009

CO₂ measures:

IEA 450 ppm scenario 2009

Temperature increase in the near-term is determined by:

- CO₂ in the atmosphere as a result of historic emissions of CO₂
- Change in emissions of short-lived substances, esp. co-control of SO₂ (leads to warming)

'Win-win' air quality measures with co-benefits on climate change

Radiative forcing from short-lived air pollutants:

- Warming: BC, CO, O₃ precursors (CH₄, CO)
- Cooling: SO₂, OC
- Only little net effects: NO_x, VOC

These substances are often co-emitted, and control measures affect several substances at the same time.

Which air quality measures would also reduce radiative forcing?

Approach developed for UNEP/WMO BC Assessment

- 1. Compile literature values on radiative forcing/GWP for each substance
- 2. For each of 2000 air pollution control measures in GAINS, estimate their impacts on CH₄/BC/OC/CO/SO₂/VOC/NO_x emissions and their net effect on radiative forcing
- 3. Determine their mitigation potential for the baseline emission projection
- 4. Select the 'top 15+ measures' that reduce most SLCF forcing globally
- 5. Estimate their temperature impact with GCMs

Radiative forcing of GHGs and air pollutants

Literature ranges of GWP100

	Mean value		Range	Reference
CO ₂	1	IPCC, AR4		
CH_4	25	IPCC, AR4	16 - 34	IPCC AR4
СО	1.9	IPCC, AR4	1 - 3	Range from AR3, cited in AR4
VOC	3.4	IPCC, AR4	2 - 7	IPCC AR4, ref. to Collins et al. 2002
ВС	680	Bond & Sun, 2006	210 - 1500	Bond & Sun, 2006
SO ₂	-40	Fuglestvedt et al., 2009	-2456	Schulz et al. 2006, (±40%)
OC	-69	Schulz et al., 2007	-35104	Bond et al. ($\pm 50\%$)
NO_x	~0			

Net impacts of BC measures on integrated radiative forcing

Monte-Carlo analysis for literature ranges of GWP

Three groups of promising measures

CH₄ measures

- Recovery of coal mine gas
- 2. Production of crude oil and natural gas
- Gas leakages at pipelines and distribution nets
- 4. Waste recycling
- Wastewater treatment
- Farm-scale anaerobic digestion
- 7. Aeration of rice paddies

Technical BC measures

- Modern coke ovens
- 2. Modern brick kilns
- 3. Diesel particle filters
- 4. Briquettes instead of coal for heating
- 5. Improved biomass cook stoves
- 6. Pellets stoves and boilers (in industrialized countries)

Non-technical measures

- 1. Ban of highemitting vehicles
- 2. Ban of open burning of agricultural waste
- Elimination of biomass cook stoves

Mitigation potentials in 2030

World, relative to baseline projection

Source: IIASA GAINS http://gains.iiasa.ac.at

Emission reductions from

■ the chosen 16 measures

■ all other 2000 measures

Mitigation potential for radiative forcing from SLCF, by region IEA World Energy Outlook 2030, global

For comparison, forcing of CO₂ emissions of 2030 is estimated at 3.6 W/m²/yr

Difference in radiative forcing in 2030 from the chosen 16 measures

The 16 measures could significantly reduce the rate of temperature increase in the next decades

Together with aggressive CO₂ strategies, they increase chances to stay below the 2° target

In addition to their climate benefits, they also contribute to important development objectives

Global Impacts of Additional Emissions Controls on Methane and Products of Incomplete Combustion 1: Methane measures, 2: 1+BC technical measures, 3: 2+Non-technical measures

But: Control of short-lived gases will not resolve all air quality problems!

Loss in statistical life expectancy from PM2.5 (Source: GAINS-Asia)

Conclusions

- 16 practical measures have been identified that, if globally implemented, could reduce radiative forcing from short-lived substances by about two thirds. These measures exhaust about 90% of the technically available mitigation potential.
- All these measures are already applied in practice; most are low-cost.
- These measures do not only reduce radiative forcing, but also improve local air quality and contribute to other development objectives.
- However, these measures will not resolve all air quality problems.
 Further air quality improvements must involve SO₂ controls.
- Their negative climate impacts could be diminished if cuts in SO₂ controls are achieved through structural measures that reduce energy consumption and thereby also lower CO₂ emissions.
- This would reinforce CO₂ mitigation strategies, which are indispensible for long-term climate objectives.