





43<sup>rd</sup> Task Force on Integrated Assessment Modelling

### Evaluation of air quality impacts with an integrated assessment model for Spain

M. Vedrenne, R. Borge, J. Lumbreras & M.E. Rodríguez

Laboratory of Environmental Modeling. Technical University of Madrid (UPM)

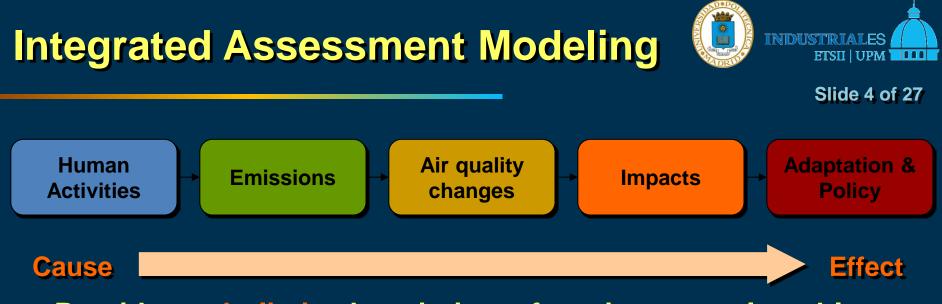
May 7<sup>th</sup>, 2014 43 TFIAM

julio.lumbreras@upm.es





Slide 2 of 27


- 1. Introduction.
- 2. Model testing and evaluation.
- 3. Conclusions.
- 4. Next steps.
- 5. References.



Slide 3 of 27



# Introduction



• Provides a holistic description of environmental problems under a policy-driven framework.

• Methodology for gaining insight about the complex interactions between phenomena.

 Intended to satisfy the needs of a wide range of stakeholders. Quick response. No intensive computations involved.

Broader scope – description of phenomena is simplified.

## **The AERIS model**

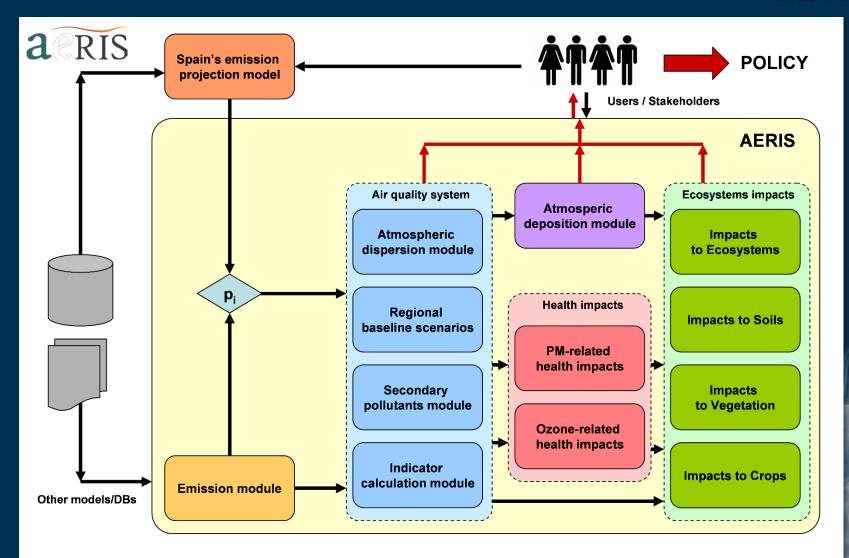


Slide 5 of 27

• AERIS – Atmospheric Evaluation and Research Integrated system for Spain.

• Multi – pollutant approach:  $SO_2$ ,  $NO_2$ ,  $NH_3$ ,  $PM_{10}$ ,  $PM_{2.5}$ . Describes formation of  $O_3$  and secondary PM. Deposition of nitrogen ( $N_{dep}$ ) and sulphur ( $S_{dep}$ ) species.

 Addresses air quality variations and impacts as a function of percentual variations in emissions against a reference scenario:


- Impacts on forests and crops (O<sub>3</sub>, SO<sub>2</sub>).
- Impacts on human health (PM<sub>2.5</sub>, O<sub>3</sub>).
- Impacts on ecosystems and soils (N<sub>dep</sub>, S<sub>dep</sub>) under development.

• Basic methodology described in Vedrenne et al., (2014) – Environmental Modelling & Software – (in press).

## **Structure of AERIS**



#### Slide 6 of 27





Slide 7 of 27

Impacts are quantified in terms of:

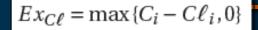
Critical levels of SO<sub>2</sub> and NO<sub>2</sub> for forests.
Relative yield losses caused by O<sub>3</sub> to 9 crop species.

**Forests** – broadleaved deciduous, broadleaved evergreen, mixed leaf, needle-leaved evergreen and flooded forests.

**Crops** – grape, maize, potato, rice, sunflower, tobacco, tomato, watermelon and wheat.

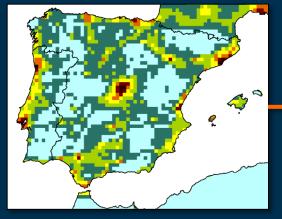
Concentration levels for the before mentioned pollutants are crossed with relevant spatial information (i.e. CORINE Land Cover 2000, FAO) and impact quantification models (Ashmore et al., 2004; Mills et al., 2007).

## Impacts on forests and crops




Slide 8 of 27

### NO<sub>2</sub> critical level exceedances for forests.




### **CLC 2000 Forests**





EXCI,NO2

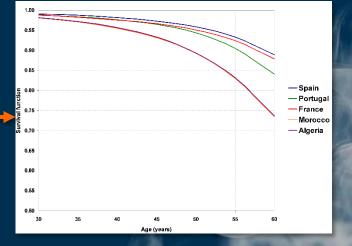


NO<sub>2</sub> Mean Annual Concentration (e.g. 2007)



Slide 9 of 27

**Derived from exposure. Impacts are quantified in terms of:** 

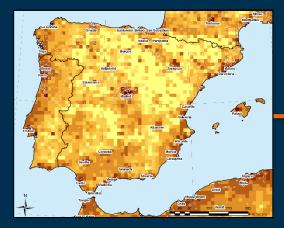

- Change in the statistical life expectancy (months).
- Total number of life years lost (YOLL).

Methodological framework adapted from IIASA (Mechler et al., 2002) and WHO (Murray et al. 2002). Based on the survival function and population counts for Spain, Portugal, Andorra, France, Morocco and Algeria.

Life tables (UN, WHO)

$$l_c(t) = \exp\left(-\sum_{z=c}^t \mu_{z,z-c+s}\right)$$

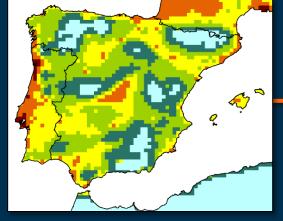
**Survival functions** 




## Impacts on health



Slide 10 of 27


### YOLL due to exposure to PM<sub>2.5</sub>



### **Population counts**







YOLL PM25

PM<sub>2.5</sub> Mean Annual Concentration (e.g. 2007)



Slide 11 of 27

Estimated as an exceedance of a critical load.

- Absolute exceedance of critical loads for soils.
- Under development. Currently quantified: CL<sub>nut</sub>(N), CL<sub>min</sub>(S), CL<sub>max</sub>(S).

The general approach is outlined by the Coordination Centre for Effects (CCE) (Posch et al., 2001; Reinds et al., 2008). Quantified for soils with the VSD model provided by CCE.



Slide 12 of 27



# Model testing and validation



Slide 13 of 27

The impacts estimated by **AERIS** were **compared** to the outputs produced by reference models: **SERCA** and **GAINS**. Emissions are the same in both cases.

**Comparison with SERCA**  $\rightarrow$  Relative yield loss of wheat (*triticum aestivum*) produced by exposure to O<sub>3</sub>.

**Comparison with GAINS**  $\rightarrow$  Change in the statistical life expectancy due to exposure to PM<sub>2.5</sub> in cohorts of >30 years old.

Testing involved conducting a concurrent comparison based in statistical performance (Pearson correlation coefficients, mean scores and scatterplots).

# **Comparison with SERCA**



Slide 14 of 27

**SERCA** (Sistema de Evaluación de Riesgos de la Contaminación Atmosférica) estimates damage to crops and forests due to exposure to  $O_3$  (de Andrés et al., 2012).

•Emission scenario: 2014 National Emission Scenario. Quantified with the SEP model (projections).

•Emission sectors and activities in SERCA and AERIS are identical  $\rightarrow$  SNAP sectors (no adaptation needed).

•Spatial resolution in SERCA and AERIS for the Iberian domain are the same (16 km × 16 km).

•Comparison based on a statistical analysis.



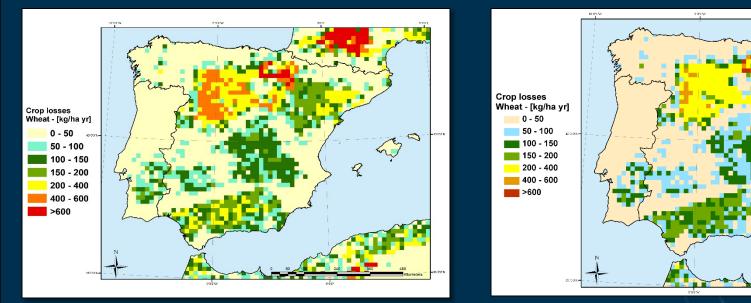
Slide 15 of 27

### 2014 National Emission Scenario (SERCA & AERIS)

| SNAP code | Activity name                              | $NO_x$ | $SO_2$ | $PM_{10}$ | $PM_{2.5}$ | $NH_3$  |
|-----------|--------------------------------------------|--------|--------|-----------|------------|---------|
| 010000    | Coal - fired power plants $\geq 300 MW$    | -58.80 | -88.22 | 0         | 0          | 0       |
| 020202    | Residential plants $< 50MW \ 15.56$        | -59.75 | -5.74  | -5.33     | 0          |         |
| 030000    | Combustion in manufacturing                | -58.85 | -33.05 | 0         | 0          | 0       |
| 040000    | Production processes                       | 0      | -7.30  | 0         | 0          | 0       |
| 070101    | Passenger cars - highway driving           | -62.11 | 0      | -48.16    | -48.16     | 0       |
| 070103    | Passenger cars - urban driving             | -17.35 | 0      | -67.53    | -67.53     | 0       |
| 070201    | Light - duty vehicles - highway driving    | -47.70 | 0      | -68.37    | -68.37     | 0       |
| 070203    | Light - duty vehicles - urban driving      | -83.20 | 0      | -90.11    | -90.11     | 0       |
| 070301    | Heavy - duty vehicles - highway driving    | -3.93  | 0      | -69.11    | -69.11     | 0       |
| 070303    | Heavy - duty vehicles - urban driving      | -65.04 | 0      | -88.61    | -88.61     | 0       |
| 0707/08   | Break, tire and road abrasion              | 0      | 0      | -17.52    | -16.75     | 0       |
| 080500    | Airports (air traffic)                     | -27.52 | 0      | 0         | 0          | 0       |
| 080600    | Agriculture (machinery)                    | -41.39 | -51.54 | -90.41    | -90.41     | 8.73    |
| 080800    | Industry (machinery)                       | -20.05 | 103.89 | -42.33    | -42.33     | 3.48    |
| 100101    | Culture w/ fertilizers - permanent crops   | 0      | 0      | 0         | 0          | -20.41  |
| 100102    | Culture w/ fertilizers - arable land crops | 0      | 0      | 0         | 0.00       | -11.15  |
| 100500    | Other agricultural activities              | 0      | 0      | 22.63     | 38.71      | -7.33   |
| 110000    | Other sources and sinks                    | 0      | 0      | 0         | 0          | -12.31  |
| _         | Portugal                                   | -20.11 | -21.01 | 13.11     | -3.81      | 42.11   |
| _         | Total $(t/yr)$                             | 947735 | 427555 | 121644.8  | 75850      | 397518  |
| —         | $%_{Total}$ (2007)                         | -39.5% | -64.7% | -35.7%    | -48.0%     | -12.1~% |

<sup>a</sup> Presented as variation percentages with respect to the 2007 National Emission Scenario

# **Comparison with SERCA**




Slide 16 of 27

~

Q

### **Results (yield losses)**

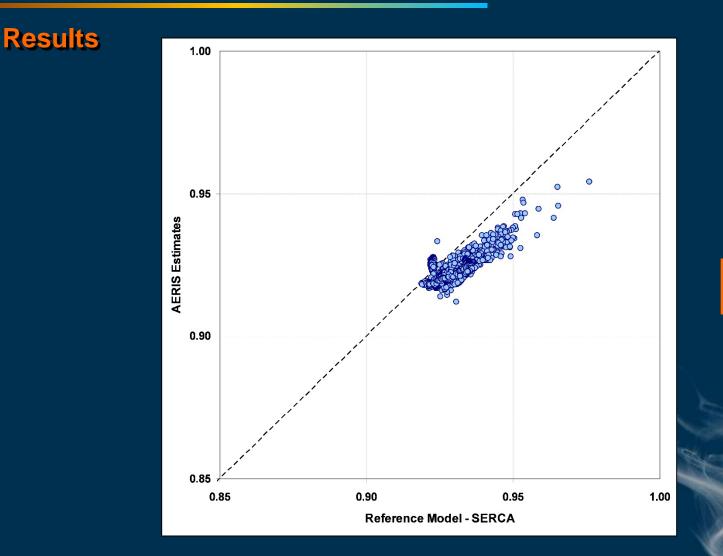


**SERCA** 

x<sub>SERCA</sub> = 66 kg/ha yr

x<sub>AERIS</sub> = 64 kg/ha yr

**AERIS** 


\*Results presented as annual crop outputs.

# **Comparison with SERCA**



r = 0.8392

#### Slide 17 of 27



\*Results presented as relative yield fractions.



Slide 18 of 27

**GAINS** is able to estimate health impacts caused by exposure to  $PM_{2.5}$ , according to the methodology published in Mechler et al., (2002) and Amann et al., (2011).

- Emission scenario: Gothenburg Protocol Revision (National Projections 2020).
- Referring GAINS emissions (aggregated by activity and sector) to SNAP groups considered by AERIS.
- Adapt the results of AERIS (16 × 16 km) to the minimum spatial resolution. In this case, to the scale of GAINS (50 × 50 km).
- Comparison based on a statistical analysis.



Slide 19 of 27

### **Gothenburg Protocol Revision - GAINS**

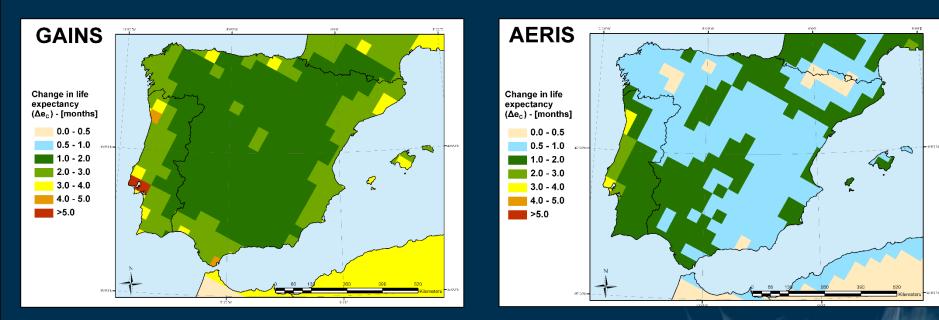
| GAINS          | Activity name                                                 | NOx   | $SO_2$ | $PM_{10}$ | PM <sub>2.5</sub> | NH <sub>3</sub> |
|----------------|---------------------------------------------------------------|-------|--------|-----------|-------------------|-----------------|
| 19.87.L        | Power & district heat plants, existing; coal                  | 38.38 | 22.86  | 0         | 0                 | 0               |
| DOM            | Residential, commercial, services, agriculture, etc.          | 38.13 | 15.34  | 2.71      | 2.21              | 0               |
| 18,80,008      | Industry: transformation sector, combustion in boilers        | 4.45  | 5.02   | 0         | 0                 | 0               |
| 18,80,078      | Industry: combustion of fossil fuels other than coal          | 19.52 | 8.91   | 0         | 0                 | 0               |
| 18_80_078_L    | Industry: combustion of coal in large boilers                 | 0.06  | 0.11   | 0         | 0                 | 0               |
| 18,80,078,8    | Industry: combustion of coal in small boilers                 | 0.01  | 0.03   | 0         | 0                 | 0               |
| 1H_RO_PAP      | Industry: paper and pulp production                           | 9.32  | 7.82   | 0         | 0                 | 0               |
| 10,80,0888     | Industry: chemical industry                                   | 3.51  | 0      | 0         | 0                 | 0               |
| 1H_OC          | Industry: Other combustion (used in emission tables)          | 56.56 | 12.88  | 0         | 0                 | 0               |
| PR_CER         | Ind. Process: Cement production                               | 0     | 37.93  | 0         | 0                 | 0               |
| PR_LINE        | Ind. Process: Lime production                                 | 0     | 5.17   | 0         | 0                 | 0               |
| PR_CORE        | Ind. Process: Coke oven                                       | 0     | 1.92   | 0         | 0                 | 0               |
| PR_GLASS       | Ind. Process: Glass production (flat, blown, container glass) | 0     | 3.57   | 0         | 0                 | 0               |
| PR_OT_HENE     | Ind. Process: Other non-ferrous metals prod.                  | 0     | 36.05  | 0         | 0                 | 0               |
| PR_PULP        | Ind. Process: Paper pulp mills                                | 0     | 19.22  | 0         | 0                 | 0               |
| PR_REF         | Ind. Process: Crude oil & other products                      | 0     | 43.77  | 0         | 0                 | 0               |
| PR_SINT        | Ind. Process: Agglomeration plant - sinter                    | 0     | 6.15   | 0         | 0                 | 0               |
| PR_SDAC        | Ind. Process: Sulfuric acid                                   | 0     | 13.23  | 0         | 0                 | 0               |
| TRA_RD_LD4C    | Light duty vehicles: cars and small buses                     | 91.02 | 0      | 3.04      | 3.04              | 0               |
| TRA_RD_LDHT    | Light duty vehicles: light commercial trucks                  | 30.17 | 0      | 1.17      | 1.17              | 0               |
| TRA_RD_RDR     | Heavy duty vehicles - buses                                   | 12.39 | 0      | 0.17      | 0.17              | 0               |
| TRA_RD_RDT     | Heavy duty vehicles - trucks                                  | 76.46 | 0      | 0.81      | 0.81              | 0               |
| TRA_RD_HEX     | Non-exhaust PM emissions                                      | 0     | 0      | 11.40     | 4.69              | 0               |
| TRA_OT_AIR     | Other transport: air traffic - civil aviation                 | 13.76 | 0      | 0         | 0                 | 0               |
| TRA_OT_AGR     | Other transport: agriculture and forestry                     | 42.25 | 0.05   | 3.15      | 2.98              | 0               |
| TRA_OT_CHS     | Other transport: construction and industry                    | 17.76 | 0.03   | 1.05      | 0.99              | 0               |
| PCOM_DTRM      | Fertilizer use - other N fertilizers                          | 0     | 0      | 0         | 0                 | 37.54           |
| FCON_UREA      | Fertilizer use - urea                                         | 0     | 0      | 0         | 0                 | 40.44           |
| ACR_ARABLE     | Agriculture: Ploughing, tilling, harvesting                   | 0     | 0      | 8.06      | 1.79              | 0               |
| ACR_REEF       | Agriculture: Livestock - other cattle                         | 0     | 0      | 1.26      | 0.28              | 27.22           |
| AGR_COMS       | Agriculture: Livestock - dairy cattle                         | 0     | 0      | 0.23      | 0.05              | 19.18           |
| AGR_OTABL      | Agriculture: Livestock - other animals (sheep, horses)        | 0     | 0      | 0         | 0                 | 32.79           |
| AGR_PIG        | Agriculture: Livestock - pigs                                 | 0     | 0      | 12.41     | 2.21              | 101.9           |
| AGR_POOLT      | Agriculture: Livestock - poultry                              | 0     | 0      | 10.77     | 2.39              | 32.35           |
| COMS_SODO_WILK | Milk yield over 3000 kg/animal treshold                       | 0     | 0      | 0         | 0                 | 9.14            |
| PORTOGAL.      | Portugal                                                      | 115.7 | 67.26  | 91.15     | 62.35             | 69.62           |

<sup>a</sup> Emissions are presented in annual metric tons (t • yr<sup>-1</sup>)



Slide 20 of 27

### **Gothenburg Protocol Revision - AERIS**


| SNAP code | Activity name                              | $NO_x$  | $SO_2$ | $PM_{10}$ | $PM_{2.5}$ | $NH_3$ |
|-----------|--------------------------------------------|---------|--------|-----------|------------|--------|
| 010000    | Coal - fired power plants $\geq 300 MW$    | -81.2   | -96.9  | 0         | 0          | 0      |
| 020202    | Residential plants $< 50 MW$               | 98.4    | 23.4   | -84.7     | -85.6      | 0      |
| 030000    | Combustion in manufacturing                | -66.0   | -69.3  | 0         | 0          | 0      |
| 040000    | Production processes                       | 0       | -50.4  | 0         | 0          | 0      |
| 070101    | Passenger cars - highway driving           | -52.2   | 0      | -75.3     | -75.3      | 0      |
| 070103    | Passenger cars - urban driving             | -52.2   | 0      | -75.3     | -75.3      | 0      |
| 070201    | Light - duty vehicles - highway driving    | -49.1   | 0      | -76.2     | -76.2      | 0      |
| 070203    | Light - duty vehicles - urban driving      | -49.0   | 0      | -76.2     | -76.2      | 0      |
| 070301    | Heavy - duty vehicles - highway driving    | -43.6   | 0      | -95.1     | -95.1      | 0      |
| 070303    | Heavy - duty vehicles - urban driving      | -43.6   | 0      | -71.2     | -71.2      | 0      |
| 0707/08   | Break, tire and road abrasion              | 0       | 0      | -1.1      | -26.0      | 0      |
| 080500    | Airports (air traffic)                     | 70.7    | 0      | 0         | 0          | 0      |
| 080600    | Agriculture (machinery)                    | -65.7   | -99.5  | -96.7     | -96.9      | 0      |
| 080800    | Industry (machinery)                       | -75.3   | -82.3  | -93.1     | -93.5      | 0      |
| 100101    | Culture w/ fertilizers - permanent crops   | 0       | 0      | 0         | 0          | -38.5  |
| 100102    | Culture w/ fertilizers - arable land crops | 0       | 0      | 0         | 0          | -38.5  |
| 100500    | Other agricultural activities              | 0       | 0      | 97.8      | 138.1      | 84.5   |
| 110000    | Other sources and sinks                    | 0       | 0      | 0         | 0          | -92.9  |
| -         | Portugal                                   | -20.2   | -21.0  | 13.1      | -3.8       | 42.1   |
| —         | Total $(t/yr)$                             | 1288962 | 747660 | 135323    | 94559      | 377361 |
| -         | $%_{Total}$ (2007)                         | -17.7%  | -38.3% | -25.7%    | -25.3%     | -19.8% |

<sup>a</sup> Presented as variation percentages with respect to the 2007 National Emission Scenario

INDUSTRIALES ETSII | UPM

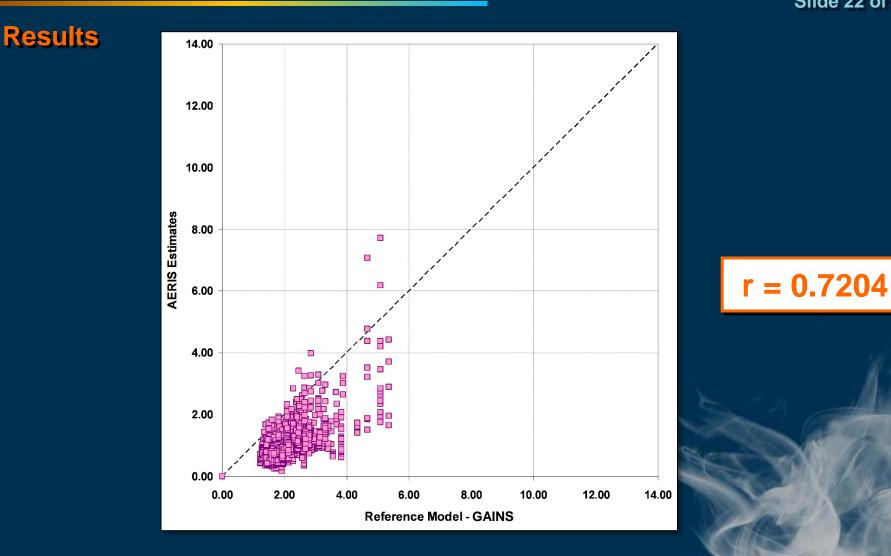
Slide 21 of 27

### **Results (change in life expectancy)**



GAINS

### x<sub>SERCA</sub> = 2.03 months


### X<sub>AERIS</sub> = 1.06 months

**AERIS** 

\*Results presented as months of life expectancy losses.



#### Slide 22 of 27



\*Results presented as months of life expectancy losses.

Slide 23 of 27



# Conclusions & Next Steps



Slide 24 of 27

Adequate correlations were observed for both comparisons.
 Similar order of magnitude between outputs.

• Conducting a classical benchmarking exercise – limited for GAINS. IAMs developed with different air quality models. Impacts quantified with different data.

• Analysing the similarities between model outputs increases the perception of a "fitness-for-purpose" IAM among stakeholders.

• The comparison with reference models provides interesting starting points for legitimating the use of AERIS and have confidence in its results.





Slide 25 of 27

• Full version available in late 2014. Results on the remaining modules will be introduced shortly (i.e. critical loads, ecosystems, etc.).

• Include an **extension** for the quantification of **cost-effective** results (abatement costs and optimization modules).

• The evaluation of models should be a central part of the model development process, not an afterthought. Therefore it should be refined in the future.

• Circulate AERIS among stakeholders and policy developers for feedback. Increasing model legitimacy and reliability perception.

Possibly reduce scale and create a version for Madrid.

### References



• Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sandler, R., Schöpp, W., Wagner, F., and Winiwarter, W., 2011: Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environ. Modell. Softw., 26, 1489-1501.

• Ashmore, M., Bermejo, V., Broadmeadow, M., Danielsson, H., Emberson, L., Fuhrer, J., Gimeno, B., Holland, M., Karlsson, P.E., Mills, G., Pihl Karlsson, G., Pleijel, H., Simpson, D., Braun, S., Harmens, H., Johansson, M., Lorenz, U., Posch, M., Spranger, T., Vipond, A., 2004. Mapping critical levels for vegetation. Chapter 3. In: Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads & Levels and Air Pollution Effects, Risks and Trends. Umweltbundesamt. Berlin, Federal Republic of Germany.

•de Andrés, J.M., Borge, R., de la Paz, D., Lumbreras, J., Rodríguez, M.E., 2012. Implementation of a module for risk of ozone impacts assessment to vegetation in the Integrated Assessment Modelling system for the Iberian Peninsula. Evaluation for wheat and Holm oak. Environmental Pollution 165, 25 - 37.

• Mechler, R., Amann, M., Schöpp, W., 2002. A methodology to estimate changes in statistical life expectancy due to the control of particulate matter air pollution. Interim Report IR-02-035. International Institute for Applied Systems Analysis, Laxenburg, Austria.

• Mills, G., Buse, A., Gimeno, B., Bermejo, V., Holland, M., Emberson, L., Pleijel, H., 2007. A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmospheric Environment 41, 2630 - 2643.

• Murray, C.J.L., Salomon, J.A., Mathers, C.D., López, A.D., 2002. Summary measures of population health: concepts, ethics, measurement and applications. World Health Organization (WHO). Geneva, Switzerland.

• Posch, M., Hettelingh, J.P., de Smet, P.A.M., 2001. Characterization of critical load exceedances in Europe. Water, Air, and Soil Pollution 130, 1139 - 1144.

•Reinds, G.J., Posch, M., de Vries, W., Slootweg, J., Hettelingh, J.P., 2008. Critical Loads of Sulphur and Nitrogen for Terrestrial Ecosystems in Europe and Northern Asia Using Different Soil Chemical Criteria. Water, Air and Soil Pollution 193, 269 - 287.







# END

Thank you for your attention!