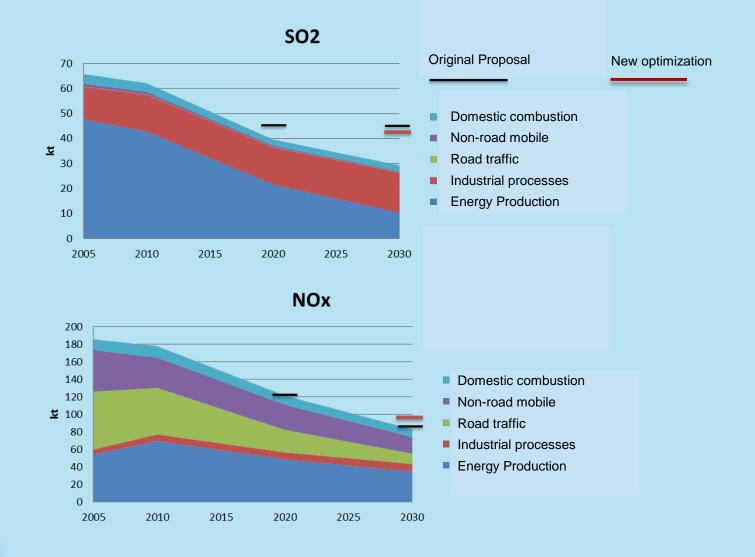

Finnish modelling experiences regarding NEC and MCP directives

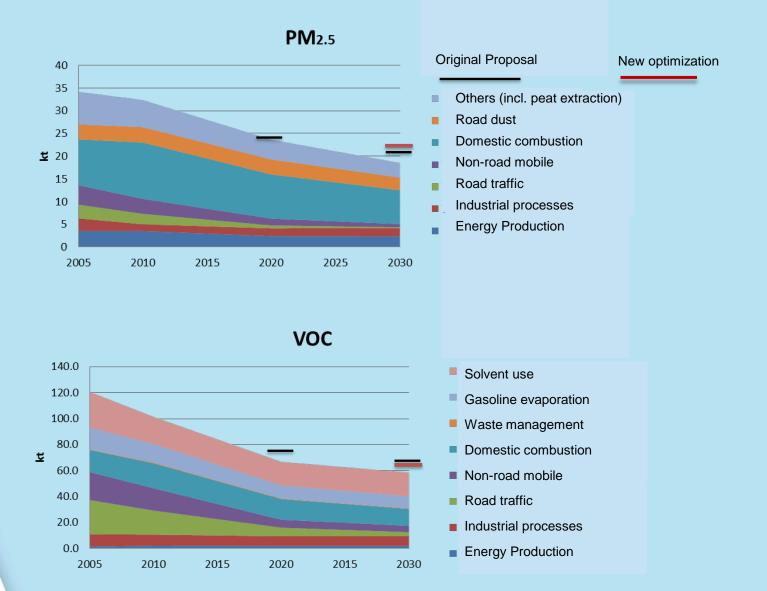
Mikko Savolahti Finnish Environment Institute


FRES (Finnish Regional Emission Scenarios) model

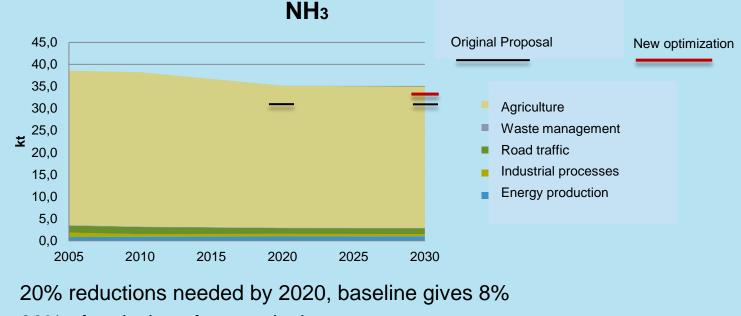
- Comprehensive and congruent calculation for primary PM and gases
 - primary PM (TSP, PM_{10 2.5 1 0.1}, chemical composition, incl. BC/OC/sulfates)
 - SO₂, NO_x, NH₃, NMVOCs
 - GHGs
- Abatement technologies and costs
- Aggregation: 154 sectors, 15 fuels (GAINS compatible)
- Large point sources (>200), small point sources (> 200), area emissions (1 × 1km)
- RWC emission calculation includes 14 appliance types, emission factors based on measurements by the University of Eastern Finland
- Dispersion with s-r matrices $(10 \times 10 \text{km}^2 \text{ and } 1 \times 1 \text{km}^2)$
- Several emission heights
- Databases of population and critical loads
- LRT from EMEP

S Y K E

Emissions in CLE



SYKE


Emissions in CLE

S

YKE

Emissions in CLE

90% of emissions from agriculture

- Reduction measures available (SYKE study, Juha Grönroos)
 - Decreasing or stopping additional protein feed to young cattle and dairy cows
 - Improved methods in spreading the manure on fields
 - Covering slurry storages with floating covers at minimum and urine tanks with tight roofs
 - Possible to achieve 24% reductions by 2020 at the cost of 4.2 M€/a

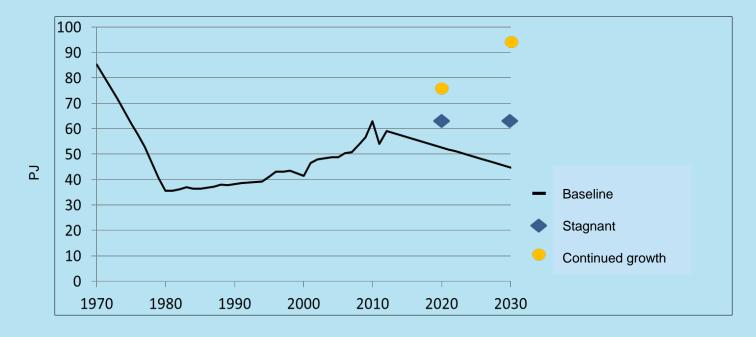
Will be higher after update

Sensitivity study on energy sector

- 3 scenarios in addition to baseline
 - PRIMES
 - More coal, less gas
 - Low carbon
 - -80 % CO2 2005-2050
 - Similar to baseline but less total energy use (mostly from gas)
 - Max carbon

SYKE

 More coal, peat and oil, less gas and nuclear

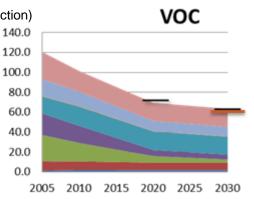

	2030	
	SO ₂	
NEC Goal	-34 %	
Baseline	-56 %	
PRIMES	-48 %	
Low carbon	-52 %	
Max carbon	-35 %	

Conclusions

- Activity pathway for energy sector influences SO2 emissions, but the goal is not very ambitious
- NOx emission less sensitive to activity changes, implementation of IED is key
- Changes in PM2.5 mostly from peat production

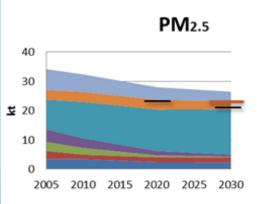
Sensitivity study on residential wood combustion 1/2

- Decreasing activity in national and PRIMES projections
- Statistics disagree
- Two scenarios in addition to baseline


SYKE

Sensitivity study on residential wood 2/2

Stagnant



- Others(incl. peat extraction)
- Road dust
- Domestic combustion 100.0
- Non-road mobile
- Road traffic
- Industrial processes
- Energy Production

- Solvent use
- Gasoline evaporation
- Waste management
- Domestic combustion
- Non-road mobile
- Road traffic
- Industrial processes
- Energy Production

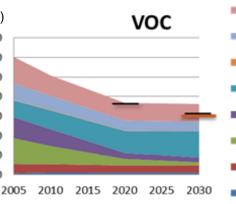
Continued growth

YKE

Others(incl. peat extraction)

140.0

80.0


60.0

40.0

20.0

0.0

- Road dust
- Domestic combustion 120.0
- Non-road mobile
- Road traffic
- Industrial processes
- Energy Production

Emission reductions in RWC

• Study by SYKE

SYKE

Measures, PM2.5 reduction potentials and costs in 2030

Measure	Reduction potential (total RWC emissions)	Cost M € a	Cost efficiency (reduced emissions)	Cost efficiency (reduced health impacts)
Ecodesign	- 6 %	14		
Legislation for sauna stoves	- 20 %	22		
Informational campaign	< - 8 %	0.3		
ESPs to boilers and banning the use of log boilers without an accumulator tank	- 17 %	44		

 Legislation on new appliances slow to effect, but it's a step into the right direction

MCP directive

- EC estimates for Finland
 - Number of plants: 409
 - Compliance costs: 3 M€/a (SO2), 2.3 M€/a (NOx), 1.3 M€/a (PM)
- National database was improved with inquiries to municipalites
 - Results show that the number of plants is 1400
 - Mostly biomass, HFO and gas
 - Mostly 1-5 MW
- Impact assessment by SYKE (on General approach)
 - 1117 plants included
 - PM limits in small plants the biggest change to CLE
 - ~600 new installations required, of which 2/3 in solid fuel plants
 - Reduction potentials: ~0.4 kt (SO2), 0.5-1 kt (NOx), 0.7 kt (PM2.5)
 - Compliance costs: ? (SO2), <2.3 M€/a (NOx), 14 M€/a (PM)
 - Resistance expected

Conclusions

- Agriculture, traffic and residential wood combustion in key role
- Additional measures needed for agricultural NH3 emissions and likely for RWC
- Impact of Ecodesign relatively small by 2030, other measures available for RWC
 - Informational campaigns seem to be very cost-efficient and worth doing in any case
 - Biggest reduction potential in sauna stoves
- Implications of MCP bigger than estimated by the commission

Thank you

Contact info: <u>mikko.savolahti@ymparisto.fi</u> +358 29 5251595 Finnish environment institute SYKE

