

Recent model developments and scenario runs with the GAINS model

45th Session of the Task Force on Integrated Assessment Modelling, Lisbon, May 23-25, 2016

Markus Amann, Chris Heyes, Peter Rafaj + EMEP/MSC-W EMEP Centre for Integrated Assessment Modelling

IIASA, International Institute for Applied Systems Analysis

- Avoided air pollution effects 1990-2010
- The role of EU-wide instruments for achieving the NECs
- Global-scale analyses

Policy action was an important driver for the past decline in emissions

Decoupling between GDP and SO₂ emissions in Western Europe

11454

Sources: Rafaj et al., (2014) Clim.Change 24(3)477-504 (2014) Sc.Tot. Env. 414

Hypothetical emissions in 2010 (EU-28)

Impact of European emissions and hemispheric background on ozone fluxes (POD1) in Europe

Conclusions (1)

Model estimates suggest that policy interventions (among other factors) have avoided dramatic further increases in air pollution impacts in Europe.

In absence of policies, in 2010 in the EU-28:

- acidification would have been 30 times more severe,
- health impacts from PM ~3 times higher,
- eutrophication 3 times higher,

6

- health impacts from O_3 70% higher, and
- vegetation damage from O₃ 30% higher.

Model studies suggest a strong influence of hemispheric background on ozone impacts, especially for fluxes

The role of EU-wide instruments for achieving the NEC targets

6

New analysis for COM The three new Directives exceed the emission reductions implied by the NEC proposals for the respective sources

The turnover rate of equipment is critical; accelerated turnover offers large potentials

Policy decisions will determine future air pollutant emissions in Asia

Regional and Global Emissions of Air Pollutants: Recent Trends and Future Scenarios

Markus Amann, Zbigniew Klimont, and Fabian Wagner

Ann.Rev.Env.Res. 38(1)

Range of future SO₂ and PM emissions in Asia: GAINS vs RCP scenarios

Range spanned by different RCP climate scenarios

Sources of ambient PM2.5 in Delhi

Initial GAINS estimates

1.44.1

Global health impact assessment (HIA)

- The global HIA method of WHO and Global Burden of Disease projects have been implemented in GAINS
- Main differences to the HRAPIE/WHO-Euro method:
 - Non-linear Exposure-Response (IER) functions
 - Cause-specific (IHD, COPD, stroke, lung cancer, ALRI)
 - Including natural background
- Inclusion of indoor pollution from household sources
- 'Population-attributable fraction' to scale pollution estimates with total deaths

Comparison with other estimates

GAINS estimates:

- Population exposure: EMEP/GAINS
- UN population statistics
- IEA data on household energy use

The non-linear IER function suggests declining benefits from reducing high pollution

Conclusions (2)

- The GAINS source apportionment methodology reveals the important contributions to population exposure from a wide range of economic sectors; important opportunities for multiple co-benefits with SDG targets
- The prevailing health impacts assessment methodologies for global analyses for ambient and household pollution (WHO/GBD) have been implemented in GAINS
- Population ageing will counteract the impacts of planned emission control measures