Norwegian Meteorological Institute

Can the WHO air quality guidelines be attained under a revised Gothenburg protocol? Future scenarios for the EU, West Balkans and EECCA.

Bruce Rolstad Denby, Ágnes Nyíri, Hilde Fagerli, Qing Mu (MET Norway, MSC-W) Zbigniew Klimont, Gregor Kiesewetter, Chris Heyes (IIASA, CIAM)

EMEP Status Report 2022, Chapter 4 (https://emep.int/publ/reports/2022/EMEP_Status_Report_1_2022.pdf)

Introduction

- This work continues on from the AAQD revision process for the EU27, extended to include EFTA, UK, Western Balkans and EECCA regions
- Emission scenarios for 2015, 2030 and 2050 are provided by CIAM, Baseline and Maximum technical feasible reduction (MFR)
- An additional 2050 scenario with diet changes and other climate related reductions
- Calculations are made for PM, NO₂, O₃ annual mean using EMEP/uEMEP
- Exposure calculations are at 250 m and station calculations are at 25 m
- Some updates in uEMEP modelling have been made
- Just one meteorological year is used (2015)
- Focus on PM_{2.5} and NO₂

- WHO guidelines for annual mean NO₂ = 10 $\mu g/m^3$ and PM_{2.5} = 5 $\mu g/m^3$
- Suggested EU AAQD in 2030 for NO₂ = 20 $\mu g/m^3$ and PM_{2.5} = 10 $\mu g/m^3$

Validation for NO_2 and $PM_{2.5}$

Validation NO₂ 2015 reference year

uEMEP NO_2 bias = -7.7 %

 $r^2 = 0.56$

Observed (μ g/m³)

Validation PM_{2.5} 2015 reference year

uEMEP $PM_{2.5}$ bias = -14 %

 $r^2 = 0.54$

Scenario name	Emission year	Description	
Baseline	2015	Reference calculation for validation	
Baseline	2030	Current existing policies and trends	
MFR	2030	Maximum technically feasible reduction	
Baseline	2050	Current existing policies and trends	
MFR	2050	Maximum technically feasible reduction	
Low	2050	As in MFR for 2050 but with additional behavioural changes in regard to diet and reductions compatible with other climate goals	

-Baseline -MFR ----'Low'

Example maps

Example maps: Netherlands/Belgium/Germany 2015 NO₂

Example maps: Armenia ++ 2015 PM_{2.5}

NO_2 and $PM_{2.5}$ Airbase station exceedances

Station calculations NO₂: EU+EFTA+WB

3500

Achieved if < 2% of stations are over the threshold (~ 60 stations)

- 10 $\mu g/m^3$ achieved in 2050
- 20 μ g/m³ achieved in 2050

Mostly due to reduced road transport emissions

uEMEP/EMEP: Number of EU+EFTA+WB Airbase station sites in exceedance of annual mean NO₂ concentrations (2877 stations)

Station exceedances NO₂: EU+EFTA+WB

Scenario name	Emission year	> 40 µg/m ³	> 20 µg/m ³	> 10 µg/m³
Observed	2015	13 %	52 %	85 %
Baseline	2015	9 %	47 %	80 %
Baseline	2030	< 0.2 %	5 %	31 %
MFR	2030	< 0.2 %	4 %	26 %
Baseline	2050	< 0.2 %	0.7 %	3 %
MFR	2050	0 %	0.3 %	1.6 %
Low	2050	0 %	0 %	0.6 %

Station calculations PM_{2.5}: EU+EFTA+WB

Achieved if < 2% of stations are over the threshold (~ 22 stations)

- $5 \mu g/m^3$ never achieved
- 10 μg/m³ achieved in 2050
 MFR scenario

uEMEP/EMEP: Concentration distribution at EU+EFTA+WB Airbase station sites for annual mean PM_{2.5} concentrations (1104 stations)

Station exceedances PM_{2.5}: EU+EFTA+WB

Scenario name	Emission year	> 20 µg/m³	> 10 µg/m³	> 5 µg/m³
Observed	2015	15 %	79 %	97 %
Baseline	2015	8 %	65 %	96 %
Baseline	2030	< 0.2 %	10 %	78 %
MFR	2030	< 0.2 %	6 %	63 %
Baseline	2050	< 0.2 %	2 %	49 %
MFR	2050	< 0.2 %	< 0.2 %	21 %
Low	2050	0 %	< 0.2 %	18 %

NO₂ population exposure for EU27+EFTA, Western Balkans and EECCA

Exposure calculations NO₂: EU+EFTA

600

Achieved if < 2% of the population is over the threshold (~10 million)

- 10 $\mu g/m^3$ achieved in 2050
- 20 μg/m³ achieved in 2030 MFR scenario

The fraction of population over thresholds is lower than the fraction of stations (~ factor 2) uEMEP/EMEP: Population exposure distribution EU27+EFTA for annual mean NO₂ concentrations (507 million)

Exposure calculations NO₂: Western Balkans

Achieved if < 2% of the population is over the threshold (~0.4 million)

- 10 μg/m³ achieved in 2050
 'low' scenario
- 20 μg/m³ achieved in 2050
 'low' scenario

uEMEP/EMEP: Population exposure distribution Western Balkans for annual mean NO₂ concentrations (18 million)

Exposure calculations NO₂: EECCA

Achieved if < 2% of the population is over the threshold (~5 million)

- 10 $\mu g/m^3$ never achieved
- 20 μg/m³ only achieved in 'low' scenario 2050
- 40 μ g/m³ achieved in 2050

uEMEP/EMEP: Population exposure distribution EECCA countries for annual mean NO₂ concentrations (255 million)

PM_{2.5} population exposure for EU27+EFTA, Western Balkans and EECCA

Exposure calculations PM_{2.5}: EU+EFTA

600

Achieved if < 2% of the population is over the threshold (~ 10 million)

- $5 \mu g/m^3$ never achieved
- 10 μg/m³ achieved in 2050

The fraction of population over thresholds is similar to the fraction of stations uEMEP/EMEP: Population exposure distribution EU27+EFTA for annual mean PM_{2.5} concentrations (507 million)

Exposure calculations PM_{2.5}: Western Balkans

Achieved if < 2% of the population is over the threshold (~ 0.4 million)

- 5 $\mu g/m^3$ never achieved
- 10 μg/m³ achieved in 2050 for the 'low' scenario

uEMEP/EMEP: Population exposure distribution Western Balkans for annual mean PM_{2.5} concentrations (18 million)

Exposure calculations PM_{2.5}: EECCA

Achieved if < 2% of the population is over the threshold (~5 million)

- 5 μ g/m³ never achieved
- 10 $\mu g/m^3$ never achieved
- 20 μg/m³ never achieved

uEMEP/EMEP: Population exposure distribution EECCA countries for annual mean PM_{2.5} concentrations (255 million)

Summary of achievability

Summary achievability of WHO guidelines (2 %)

• EU27 + EFTA

- Achieving 10 $\mu g/m^3$ at station sites for NO₂ is not likely until 2050 but possible for population exposure in 2030 with the MFR scenario
- Achieving 5 $\mu g/m^3$ for PM_{2.5} for all countries is not likely at all

Western Balkans

- Achieving 10 $\mu g/m^3$ for NO₂ may be possible in 2050 under the strictest MFR low scenario
- Achieving 5 $\mu g/m^3$ for PM_{2.5} is not likely for any country

- EECCA
 - Achieving 10 $\mu g/m^3$ for NO₂ is not likely under any scenario
 - Achieving 5 $\mu g/m^3$ for PM_{2.5} is not possible (natural sources)

Summary achievability of the suggested EU AAQD limit values (2 %)

• EU27+EFTA

- Achieving 20 $\mu g/m^3$ for NO₂ is a challenge but possible with the 2030 MFR scenario. Will likely require additional local measures
- Most countries will have achieved 20 $\mu g/m^3$ everywhere in 2050
- Achieving 10 $\mu g/m^3$ for PM_{2.5} everywhere is a large challenge in 2030 but possible in 2050
- Around half of the countries (16) will have achieved $PM_{2.5}$ concentrations < 10 $\mu g/m^3$ everywhere in the 2030 MFR scenario

Questions?

Some suggested questions:

- How do the source contributions change with the scenarios in the other regions?
- Where did this 2 % come from? Is 10 million people over the recommended levels really acceptable?
- How does the bias affect the scenarios?
- Should the WHO guidelines only be applied for population exposure and not for station exceedances? Is it then more achievable?

Additional slides

Summary population exposure per region

Population weighted concentration for NO₂ per region

uEMEP/EMEP: Annual mean NO₂ population weighted concentration (PWC) per region

Population weighted concentration for PM_{2.5} per region

uEMEP/EMEP: Annual mean PM_{2.5} population weighted concentration (PWC) per region

Source contributions to NO₂ per country and region

EU+EFTA source contributions for NO₂

EU+EFTA source contributions for NO₂

Western Balkans source contributions for NO₂

Western Balkans source contributions for NO₂

EECCA source contributions for $PM_{2.5}$

EECCA source contributions for PM_{2.5}

Source contributions to $PM_{2.5}$ per country and region

EU+EFTA source contributions for PM_{2.5}

EU+EFTA source contributions for PM_{2.5}

Western Balkans source contributions for PM_{2.5}

Western Balkans source contributions for PM_{2.5}

EECCA source contributions for $PM_{2.5}$

EECCA source contributions for PM_{2.5}

-EU+EFTA+UK -EECCA+Turkey -West Balkan