Joint Research Centre

the European Commission's in-house science service

Rita Van Dingenen Frank Dentener Zbigniew Klimont Oliver Wild

European Commission

TFIAM 46, May 2nd 2017

Scope:

- Trends in O_3 and O_3 exposure metrics in Europe, from 2010 to 2050
- Local versus long-range transport contributions
- Role of CH₄
- Role of Shipping
- Co-benefits of climate mitigation

Method:

 HTAP2 emission scenarios: ECLIPSE V5a (IIASA, Zig Klimont) 2010, 2030, 2050

REF-CLE, REF-MTFR, CLIM-CLE

- Model: TM5-FASST
 - global linearized source-receptor model, derived from TM5 CTM (Krol, Dentener, et al.)
 - Approach as in Wild et al., 2012 (CLRTAP assessment, HTAP1 regions)
 - Regional definition more like HTAP2

(but only 1 model)

European Commission

Take-home messages:

- Without further climate mitigation or technical controls beyond CLE, and despite emission reductions in Europe, the averaged O₃ health-relevant exposure metric in Europe will not reduce below 2010 values by 2030, and will even be higher in 2050 than in 2010.
- Under CLE, globally increasing emissions of CH₄ emissions offset the CLE mitigation effort in Europe.
- Mitigation of CH₄ (as part of AQ and/or climate policy action) is an effective pathway to reduce future O₃ exposure to population and crops
- MFR technologies lead to a 17% (2030) to 21% (2050) reduction in O₃ exposure in Europe, compared to CLE. Roughly half of this benefit is due to reductions in shipping emissions and CH₄.

the FAst Scenario Screening Tool TM5-FASST

- 'Emulator' of the full TM5-CTM global chemical transport model
- Source-Receptor model
- Linearized emission-concentration relations calculated with TM5-CTM (emissions: RCP 2000, meteo: yr 2001)
- 56 source regions
- EU27: 16 FASST regions
- Fixed natural PM (dust and seasalt) fields

Model input: annual emissions by region of SO₂, NO_x, NH₃, CO, NMVOC, Elemental Carbon, Primary Organic Matter, PM_{2.5}, CH₄ Model output (non exhaustive) – as gridmaps or region/country averages

- PM_{2.5} concentration and impacts on human health
- O₃ and O₃ metrics, impacts on agricultural crop losses and human health
- NO_y and SO_x deposition (exceedences of critical loads)
 - Radiative forcing CO_{2e} emissions of short-lived pollutants (EC, NOx, ...) based on GWP[H] and GTP[H]

EC deposition (e.g. Arctic, Himalayas,...)

Delta concentration with base run = concentration response to 20% emission change in each source region

Commission

Ozone from CH₄:

- 1 global emission-concentration SR field
- From HTAP1 (SR2 SR2)
 - SR1 [CH4] = 1760 ppb
 - SR2 [CH4] = 1408 ppb (-20%)
 - Corresponding delta emission (TM5 CTM) = 77 Tg

Commission

CH4 normalized delta SR2-SR1 annual mean SFC O3

Note: CO \rightarrow O3 not included (yet)

ECLIPSE v5a - Emission trends

 CH_4

NO_x

NMVOC

FASST vs. CLRTAP assessment

Summer vs. Winter

CLRTAP assessment FASST 4 Surface ozone, ppbV Seasonal responses 4 2 . 2 ************* 0 0 -2 -2 -4 -4 -6 **REF-CLE** -6 - Summer CLIM-CLE -8 -8 ····· Winter **REF-MFTR** -10 --10 2020 2010 2020 1990 2000 2010 2030 2040 2050 1990 2000 2030 2040 2050

FASST: CLIM 2030 – 2010

Possible issues:

- Linear extrapolation of titration effect: overestimates (winter time & annual mean) negative dNO_x – dO₃ correlation in Europe → increasing O₃ with decreasing NO_x
- Result of higher resolution of TM5 vs HTAP1 models?
- CH₄ → O₃ impact: time delay for steady-state not considered
- Effect of reducing CO not included

JJA mean of daily max O3 (health metric)

(ppbV) CLE CLIM-CLE MFR CH4 6.00 6.00 6.00 SHP 4.00 4.00 4.00 2.00 2.00 2.00 ROW 0.00 0.00 0.00 SEA -2.00 -2.00 -2.00 -4.00 -4.00 -4.00 **NAM** -6.00 -6.00 -6.00 EUR -8.00 -8.00 -8.00 -10.00 J -10.00 --10.00 --NET 2030 2050 2030 2050 2030 2050

	2010	2030	2050	2010	2030	2050	2010	2030	2050	
∆ 2010		-0.59	2.42		-2.60	-1.85		-9.91	-9.72	
Abs. value	55.8	55.2	58.2	55.8	53.0	53.7	55.8	45.9	46.0	
% Δ CLE (yr)					-4%	-8%		-17%	-21%	

Anthr. PM2.5 (pop. weighted mean)

(µg/m³) CLE **CLIM-CLE** MFR 6.00 6.00 6.00 4.00 4.00 4.00 2.00 2.00 2.00 0.00 0.00 0.00 -2.00 -2.00 -2.00 -4.00 -4.00 -4.00 -6.00 -6.00 --6.00 2030 2050 2030 2050 2030 2050

SHP

ROW

SEA

NAM

EUR

--NET

	2010	2030	2050	2010	2030	2050	2010	2030	2050
∆ 2010		-1.4	-1.1		-1.9	-1.9		-4.4	-4.6
Abs. value	7	5.6	5.8	7	4.9	4.9	7	2.6	2.4
% ∆ CLE (yr)					-12%	-15%		-54%	-59%

Pollutant emission trends developed in the climate community (RCP, SSP) Rao et al., 2017

https://tntcat.iiasa.ac.at/SspDb

Pop. weighted PM2.5 & exposure to WHO limit levels

Pop. weighted O3 exposure metric

population fraction exposed to < 35µg/m³

17

uropean ommission

| Legal notice | Cookies | Contact | Search | English (en)

JOINT RESEARCH CENTRE

FAst Scenario Screening Tool - FASST

uropean Commission > EU Science Hub > FASST

FASST restricted access

Registration

Contact

FASST - FAst Scenario Screening Tool

The TM5-FASST tool, developed at JRC Ispra (Italy), allows to evaluate how air pollutant emissions affect large scale pollutant concentrations and their impact on human health (mortality, years of life lost) and crop yield. The tool is specifically designed to compare a scenario (policy case) with a counterfactual case (baseline). The target policy domains are national to regional air quality policies, or air pollutant scenarios linked to other policy domains (e.g. climate policy). The tool is particularly user-friendly, web-based, flexible, does not require any coding or modelling experience and can be applied from the global to the regional domain. The user can make use of a number of built-in scenario groups or apply custom emission scenarios.

Features

FASST troemble timission sets •	Hello username
Input	Singuet. Impus options
201505298 • Load Delete	Project name Save Receptors
Input Options	Output Emissions
Use perturbations to base case	PM Imparts
For all sectors	GLE Impacts AUX Impacts
Same value for all sectors.	Reset Cross Supports Global Werning Supports Arctic Supports
Sectors	

European Commission

📥 🗛 🛵

Outlook for FASST:

- EMEP-FASST (based on country-to-country EMEP SR matrices, multiple meteo and emission years, ensemble average and stdev)
- Towards HTAP-FASST
- Address non-linear regimes in O₃
- Include CO

×.

Thank you!

. میلو

Questions?

delta annual mean O3 for 80% reduction of CO (RCP year 2000)

Data Min = -2.0, Max = -0.0

FASST vs. CLRTAP assessment

- Linear extrapolation of titration effect: overestimates (winter time & annual mean) negative dNO_x – dO₃ correlation in Europe → increasing O₃ with decreasing NO_x
- CH₄ → O₃ impact: time delay for steady-state not considered
- CO not included