

Convention on Long-range Transboundary Air Pollution

Joint WGE-TFIAM background report to the revised Gothenburg Protocol

Briefing by the chair

Purpose

- Background info to revised protocol
- Description of scenario assumptions
- Maps for Europe
- Tables with data per country

→ useful for review & implementation problems

Contents

- 1. Activity trends and future scenario 1990-2020
 - 1. GDP 2. Energy 3. Transport 4. Agriculture
- 2. Key measures
- 3. Emissions (BL, Protocol, ..., MTFR)
- 4. Air quality and deposition
- 5. Impacts
 - 1. Yolls 2. Acidification 3. Eutrophication 4. Ozone deaths
 - 5. Ozone damage to vegetation 6. Damage to materials 7. Climate
- 6. Costs and benefits
- 7. Long term prospects

Examples

Table 2.3: Projection of economic, energy and transport statistics for the year 2010

	Population		GE)P	Ene	ergy	Veh	icles
	Million	Change	Billion	Change	PJ	Change	1000	Change
	persons	1990-	EURO	1990-		1990-	vehicles	1990-
	2010	2010	2010	2010	2010	2010	2010	2010
Austria	8.23	6.7%	158.4	46%	1421	14%	5813	53%
Belgium	9.96	0.0%	198.9	52%	2436	28%	6729	45%
Denmark	5.27	2.6%	110.0	55%	783	7%	2391	15%
Finland	5.29	6.1%	122.2	81%	1615	31%	3159	33%
France	62.20	10.2%	1266.4	49%	11128	22%	43100	39%
Germany	83.59	5.3%	1663.8	58%	14176	-2%	56785	36%
Greece	10.75	6.2%	135.5	74%	1813	97%	6550	126%
Ireland	3.58	2.2%	79.1	146%	698	71%	2348	139%
Italy	57.80	0.2%	1081.5	46%	8444	26%	41220	25%
Luxembourg	0.38	0.6%	10.8	58%	129	6%	278	34%
Netherlands	16.50	10.4%	398.2	91%	3713	36%	10462	53%
Portugal	9.49	1.3%	129.9	81%	1112	59%	7251	48%
Spain	40.57	4.1%	631.2	67%	5215	44%	27262	60%
Sweden	9.12	6.5%	180.2	47%	2581	6%	5709	41%
UK	60.22	4.9%	1190.3	58%	9875	16%	36803	48%
EU-15	382.96	5.1%	7341.2	57%	65141	19%	255861	42%

Table 3.1: Emissions of NO_x for 1990 and the Reference (REF), Protocol, revised G5/2 and hypothetical maximum technically feasible reductions (MFR_{ult}) scenarios (in kilotons). Percentage changes relate to the year 1990.

	1990	REF		Protocol		G5/2rev		$\mathrm{MFR}_{\scriptscriptstyle \mathrm{ult}}$	
	kt	kt	Change	kt	Change	kt	Change	kt	Change
Austria	192	103	-46%	107	-44%	91	-53%	54	-72%
Belgium	351	191	-46%	181	-48%	127	-64%	81	-77%
Denmark	274	128	-53%	127	-54%	113	-59%	49	-82%
Finland	276	152	-45%	170	-38%	152	-45%	56	-80%
France	1867	858	-54%	860	-54%	704	-62%	383	-79%
Germany	2662	1184	-56%	1081	-59%	1081	-59%	622	-77%
Greece	345	344	0%	344	0%	344	0%	127	-63%
Ireland	113	70	-38%	65	-42%	55	-51%	27	-76%
Italy	2037	1130	-45%	1000	-51%	901	-56%	396	-81%
Luxembourg	22	10	-55%	11	-50%	8	-64%	4	-80%
Netherlands	542	280	-48%	266	-51%	266	-51%	127	-77%
Portugal	208	177	-15%	260	25%	144	-31%	51	-76%
Spain	1162	847	-27%	847	-27%	726	-38%	263	-77%
Sweden	338	190	-44%	148	-56%	159	-53%	75	-78%
UK	2839	1186	-58%	1181	-58%	1181	-58%	521	-82%
EU-15	13226	6849	-48%	6648	-50%	6054	-54%	2836	-79%
					l				

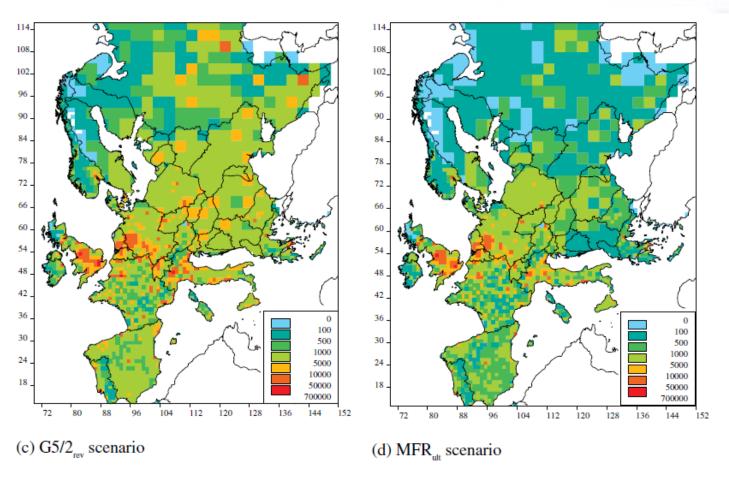
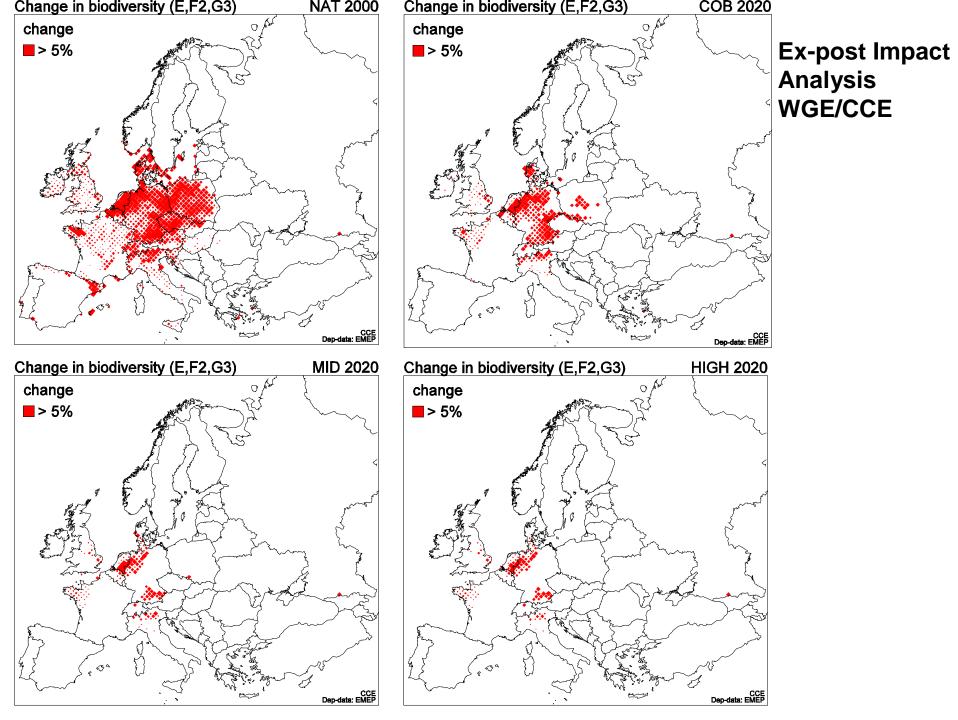
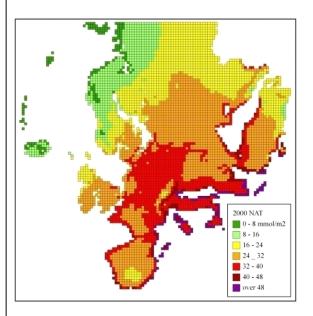
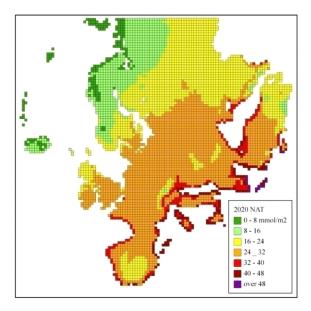
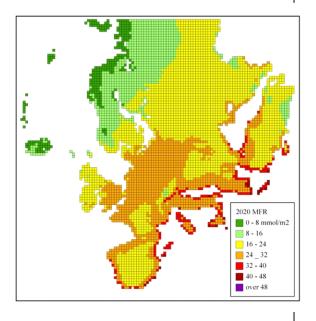



Figure 3.4: VOC emission densities (tons per 50*50 km grid cell)





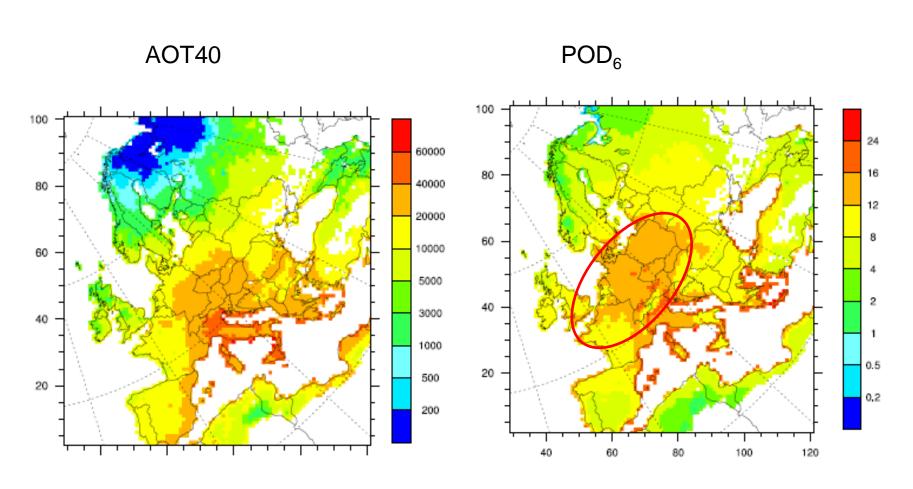

ICP Vegetation:

Ozone impacts (POD₆) decrease in time and with MFR

NAT2000 NAT2020 MFR2020

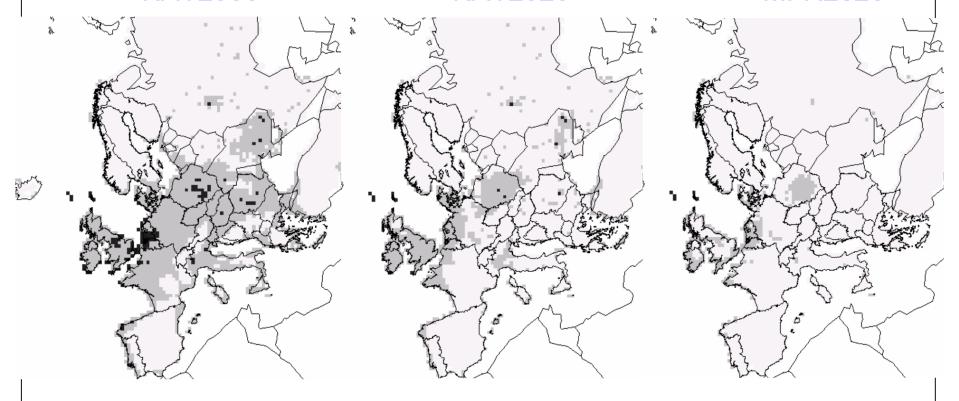
The magnitude of the impact is expected to decrease

The areas (intensely) impacted are reduced


The risk to food production continues to be of concern in the INERIS - E future, including northern Europe

Global wheat production: -15% (2000) .. -25% (2030) ~10% reduction of carbon sequestration

Ozone damage indicators


Source: Simpson et al., Env. Poll. (2007)

ICP Materials:

Effects on materials will decrease but not disappear by 2020

NAT2000 NAT2020 MFR2020

More severe effects are expected in urban areas

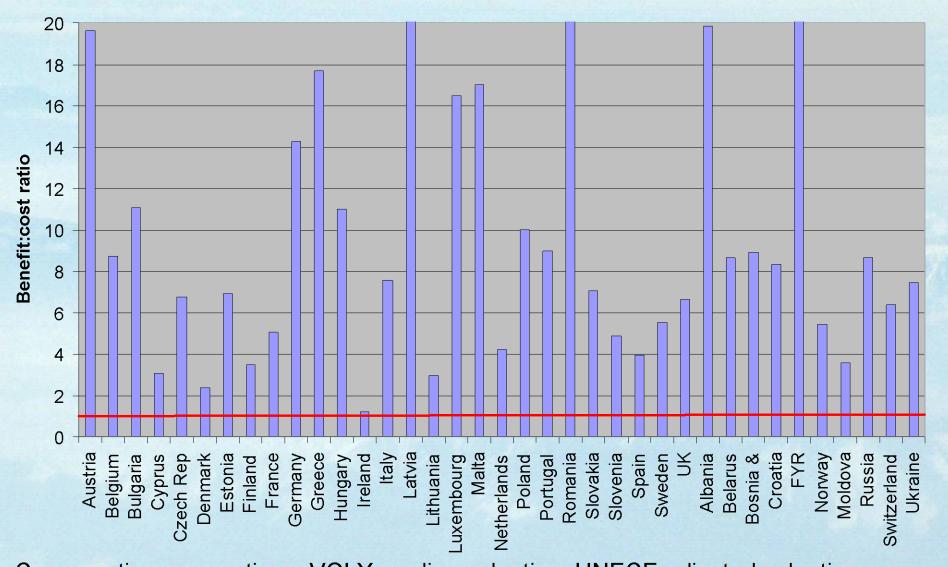
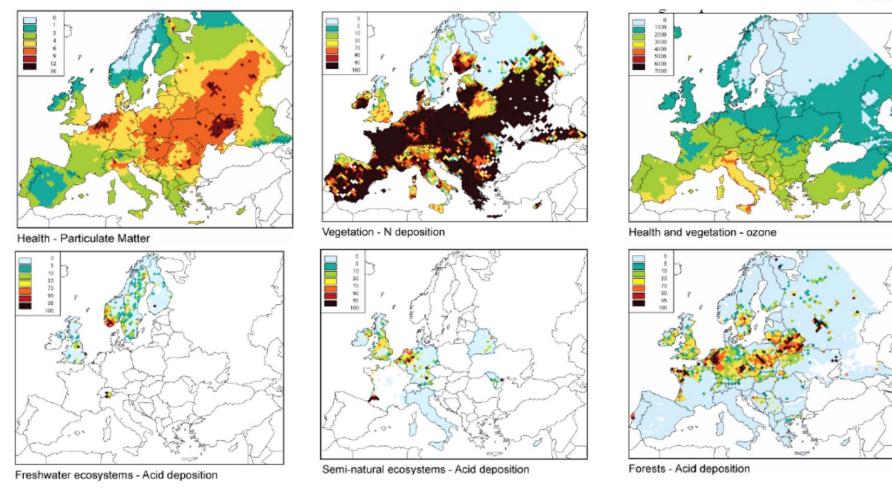


Table 3.6: Costs of SO₂ reductions for the Reference (REF), Protocol, revised G5/2 and hypothetical maximum technically feasible reductions (MFR_{ull}) scenarios (in million EURO/year).

	REF	Protocol		G5/21	$\mathrm{MFR}_{\mathrm{ult}}$	
		Above REF	Total	Above REF	Total	Total
Austria	191	1	192	5	196	213
Belgium	426	47	472	122	548	631
Denmark	138	17	156	13	151	276
Finland	247	0	247	0	247	399
France	1276	17	1293	132	1408	1653
Germany	3264	16	3280	240	3504	3761
Greece	434	0	434	0	434	826
Ireland	132	9	142	12	144	192
Italy	1776	17	1793	87	1863	2122
Luxembourg	13	0	13	0	13	16
Netherlands	340	19	359	19	359	360
Portugal	181	\mathbf{O}^{\dagger}	181	0	181	290
Spain	809	0	809	9	818	1275
Sweden	316	0	316	0	316	434
UK	1269	142	1411	295	1564	2674
EU-15	10813	285	11098	935	11748	15122


Benefit cost ratios for HIGH*

Conservative assumptions: VOLY median valuation, UNECE adjusted valuation, quasi-marginal calculation of costs and benefits, only health impacts included. Red line shows BCR=1, above which net benefit recorded.

Remaining air quality problems in 2020 National projections + no CLE enforcement in EECCA countries

The Nitrogen Challenge

	MFR 2050 with 80% reduction of CO ₂ emissions	No damage to health & ecosystems
SO ₂	80 %	50 %
PM / Black carbon	80 %	50 %
NO _x	50 %	80 %
NH ₃	30 %	80 %

Indicative emission reduction percentages (+/- 10%) based on TFIAM/ACCENT-workshop 5-6 March 2009

		rec	luction	re	duction		
S	S		0.4	NOx-N	0.5	NH3-N	1
densities	BG	4.41	91% LU	3.259	85% NL	3.23	69%
)Si	BA	4.012	90% NI	2.607	81% BE	2.146	53%
<u>e</u>	M D	1.727	77% B E	2.32	78% <mark>I</mark> /U	1.901	47%
ס	PL	1.682	76% GB	1.35	63% DK	1.617	38%
ō	BE	1.617	75 % DK	1.078	54% IF	1.531	35%
emission	MK	1.615	75% IT	1.016	51%/DE	1.446	31%
Ë	HU	1.43	72% DE	1.013	51% CH	1.245	20%
eП	RO	1.408	72% PT	0.732	32% IT	1.15	13%
	CS	1.359	71% CZ	0.725	31% FR	1.104	9%
equal	TR	1.095	63% CY	0.682	27% MD	1.089	8%
ě	UA	0.961	58% GR	0.618	19% GB	1.086	8%
<u>via</u>	CY	0.915	56 % FR	0.606	17% RO	0.987	0%
>	BY	0.845	5 <mark>3</mark> % UA	0.605	17% BG	0.917	0%
2050	NL	0.816	7 1% PL	0.602	17% PL	0.868	0%
7	CZ.	0.767	48% ES	0.593	16% UA	0.855	0%
CL's	GB	0.748	47% SI	0.59	15% SI	0.807	0%
5	GR	0.641	38% AT	0.582	14% AL	0.739	0%
	DE	0.633	37% MD	0.581	14% HU	0.732	0%
meeting	IT	0.623	36% CH	0.524	5% CZ	0.716	0%
ě	HR	0.615	35% HR	0.509	2% LT	0.7	0%
μ	PT	0.578	^{31%} Equ	ial emission d	lensities will	reduce emis	ssions
Ξ.	SK	0.55	27% moi	re in areas wh			
o	SI	0.547	2/%	areas with hi			d traffic
Aspiratior	LU	0.535	2370 -		_		ıı ı
ij	AL	0.517	23% IE	0.435	0% CY	0.554	0%
St	EE	0.457	12% BG	0.402	0% AT	0.553	0%
⋖	ES	0.418	4% BY	0.399	0% SK	0.54	0%