



**ICP Vegetation:** 

ICP VEGETATION



Contributions to the review of the Gothenburg Protocol, including progress with ex-Post analysis

Gina Mills, Head of Programme Coordination Centre for the ICP Vegetation

- 1. Proving effects occur where flux is highest
- 2. Defining aspirational targets for TFIAM
- 3. Developing new and revising existing flux-based critical levels and dose-response functions
- 4. Liaising with TFIAM, EMEP, WGSR during review of Protocol
- 5. Future reports on effects on food security and C sequestration







# Aspirational targets for 2050

#### There should be no O<sub>3</sub> effects on:

- The yield quantity and quality of agricultural and horticultural crops (including forage)
- The growth of individual species and biodiversity of (semi-)natural vegetation
- The leaf appearance and growth of forest trees
- The ecosystem services (including carbon sequestration) of vegetation

## Interim targets for 2020, 2030

Recommend these are achieved by gap closure





# Progress with deriving flux-based critical levels for vegetation





#### **ICP Vegetation Expert Panel Meeting 'Flux-based assessment of ozone effects for air pollution policy'** 9-12 November, 2009, JRC-Ispra, Italy

42 experts representing 12 Parties to the Convention, ICP
 Vegetation, ICP Forests, TFIAM, CIAM, EMEP, JRC, Convention
 Secretariat
 Agreed on methodology and further data analysis before TFM

23rd Task Force Meeting of the ICP Vegetation

1-3 February, 2010, Tervuren, Belgium,

53 delegates from 18 Parties to the LTRAP Convention
 Agreed 10 new flux-based critical levels and their application

<u>New terminology</u>: O<sub>3</sub> flux parameter - Phytotoxic Ozone Dose (POD)





ICP VEGETATION

DO<sub>3</sub>SE Model

(1) Collate data bases

- (2) Calculate fluxes using downloadable model,  $DO_3SE$  (Deposition of  $O_3$  for Stomatal Exchange)
  - http://sei-international.org/index.php/tools

Centre for

Ecology & Hydrology

CIE

(3) Develop flux-effect relationships for a range of thresholds (Y in  $POD_Y$ )

(4) Agree on which "Y " to use and which response functions are sufficiently robust

(5) Determine critical level as lowest flux at which a statistically significant detectable effect occurs





#### Revised/new critical levels for effects of ozone on vegetation (mmol m<sup>-2</sup>)

| Receptor                                                   | Effect<br>(% reduction)   | Parameter        | Critical<br>level<br>(actual) | Critical level<br>(Mapping<br>Manual) |
|------------------------------------------------------------|---------------------------|------------------|-------------------------------|---------------------------------------|
| Wheat*                                                     | Grain yield (5%)          | POD <sub>6</sub> | 1.2                           | 1                                     |
| Wheat                                                      | 1000 grain weight<br>(5%) | POD <sub>6</sub> | 1.2                           | 1                                     |
| Wheat                                                      | Protein yield (5%)        | POD <sub>6</sub> | 1.8                           | 2                                     |
| Potato                                                     | Tuber yield (5%)          | POD <sub>6</sub> | 3.9                           | 4                                     |
| Tomato                                                     | Fruit yield (5%)          | POD <sub>6</sub> | 2.3                           | 2                                     |
| Norway Spruce                                              | Biomass (2%)              | POD <sub>1</sub> | 8.2                           | 8                                     |
| Birch and Beech                                            | Biomass (4%)              | POD <sub>1</sub> | 3.7                           | 4                                     |
| Productive grasslands (clover)                             | Biomass (10%)             | POD <sub>1</sub> | 2.1                           | 2                                     |
| Conservation grasslands (clover)                           | Biomass (10%)             | POD <sub>1</sub> | 2.1                           | 2                                     |
| Conservation grasslands ( <i>Viola</i> spp), provisional** | Biomass (15%)             | POD <sub>1</sub> | 6.3                           | 6                                     |

\* Mediterranean VPD parameterisation for wheat to be included in Mapping Manual
\*\* Flux model to be added for Dehesa clover species





## **Crops: Recommendations for IAM**



## Full flux model

Critical level (and response function) for **security of food supplies**:

- Protein yield of wheat (POD<sub>6</sub> of 2)
- Tomato fruit yield (POD<sub>6</sub> of 2)

# **Generic crop flux model**

Response function to show areas of highest potential damage (dose-response function)





#### **Forests – <u>Recommendations for IAM</u>**

Critical level (full flux model), for protection against:

(1) Loss of <u>carbon storage</u> in the living biomass of trees
(2) Loss of <u>environmental protection</u> (e.g. soil erosion, floods, avalanches)

Generic forest tree flux functions for generic deciduous and generic Mediterranean tree species





ICP VEGETATION



### (Semi-)natural vegetation : <u>Recommendations for IAM</u>



Critical level (full flux model) for protection against:

Loss of <u>vitality and fodder quality</u> of pasture Clover, POD<sub>1</sub> of 2 mmol  $m^{-2}$ 

Loss of vitality of natural species\*

Clover,  $POD_1$  of 2 mmol m<sup>-2</sup> Violets,  $POD_1$  of 6 mmol m<sup>-2</sup>

\* May also protect against loss of biodiversity





# Some further considerations for IAM

# (1) The Optimization Process

ICP VEGETATION

Centre for Ecology & Hydrology NATURAL EMVIRONMENT RESEARCH COUNCIL

What are the implications if health-based parameters are used?



Example: if the SOMO35 restriction for health is 2 ppm d, there is the potential for vegetation to be damaged in <u>27% of grid squares</u>

\* Each point is one on-land EMEP 50 x 50 km grid, 2006 map 17% for 12

#### What are the implications if an AOT40 of 3 ppm h is used?

ICP VEGETATION



**Example:** if the AOT40 critical level of 3 ppm h is the restriction for GAINS, there is the potential for vegetation to be damaged in <u>50% of grid squares</u>

\* Each point is one on-land EMEP 50 x 50 km grid, 2006

Centre for Ecology & Hydrology





# Some further considerations for IAM

# (1) Ex-Post Analysis





#### Suggested possible use of the generic crop function







#### Example: Use of generic crop function to show areas at greatest of damage



Post-TFM concerns raised by Spain - flux model may be underestimating effects in Spain

Query: can we incorporate a "Med" parameterisation?

#### Ozone flux to a generic crop, 10 year mean, 1995 - 2004

Note: newer version of flux model will revise this map





# Forthcoming reports from the ICP Vegetation\*

\* Subject to continuation of funding







## **ICP Vegetation**

# 2010 State of Knowledge Report

## Impacts of ozone on food security

Ozone impacts on crops in Europe Country reviews of issues Flux-based yield quantity and quality Market value of leafy salad crops

Ozone impacts in Asia

□ Ozone impacts in a changing climate (focus: drought)

Acharnes Attica, Greece, glasshouse lettuce, 100% commercial value loss of €12500 overnight

Global assessment

Policy and research recommendations

\* To be completed in time for EB meeting in December this year





#### **ICP Vegetation**

# 2011 State of Knowledge Report

# Impacts of ozone on carbon sequestration, hydrology and climate



Ozone has a greater effect on below-ground C storage  Review of current knowledge
 Modelling of ozone impacts on carbon storage in forests and grasslands at the following scales: (a) Europe, (b) Global

Discussion, conclusions and future research needs
 Policy implications





#### **ICP Vegetation: Summary of progress for ozone**

#### In the last year:

- Set aspiration targets for 2050
- Derived flux-effect relationships for 10 receptor/effects
- Set new flux-based critical levels for crops, (semi-)natural vegetation and trees
- Made recommendations for IAM

#### In the next 6 months:

- Revise Mapping Manual
- Work with EMEP and TFIAM on Ex-Post analysis
- Write ozone and food security report





#### <u>Thank you</u> to the many people from ICP Vegetation who worked very hard to develop flux-effect relationships in time for the TFM

Including:

**Crops**: Håkan Pleijel, Helena Dannielsson, Ludger Grünhage, Karine Vandermeiren, Viki Bermejo (and Med. colleagues), Jürgen Bender

**(Semi-)natural vegetation**: Felicity Hayes, Patrick Büker, Ignacio Gonzalez

Forest trees: Sabine Braun, Patrick Büker, Lisa Emberson

And many more....







Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNC

AOT40, ppm h

SOMO35, ppm d



• Location of damage in 2006 (but only limited survey data available)



CETT Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUN

AOT40, ppm h



• Location of damage in 2006 (but only limited survey data available)



• Location of damage in 2006 (but only limited survey data available)





### Flux Models: background information

| Functions included | Full flux<br>model | Generic<br>species<br>model |
|--------------------|--------------------|-----------------------------|
| Temperature        | yes                | yes                         |
| Humidity (VPD)     | yes                | yes                         |
| Light (PAR)        | yes                | yes                         |
| Soil moisture      | yes                | no                          |
| Ozone              | (yes)              | no                          |
| Phenology          | yes                | no                          |

% of on-land grid squares in **AFst3gen category (crops)** >= 6 (Damage >= 12 **RAINS/GAINS** possible/ (Damage restriction expected) expected) SOMO35 of 1 10.0% 4.4% ppm d SOMO35 of 2 27.3% 16.6% ppm d **AOT40** of 3 35.3% 50.0% ppm h

Centre for Ecology & Hydrology

CE

ICP VEGETATION

|  | AFts3gen             | mean    | Mean    |  |
|--|----------------------|---------|---------|--|
|  | class                | SOMO35  | AOT40   |  |
|  | (crops)              | (ppm d) | (ppm h) |  |
|  | 0-6                  | 2.95    | 0.19    |  |
|  | (damage<br>unlikely) |         |         |  |
|  | 6 – 12               | 1.78    | 0.44    |  |
|  | (damage<br>possible) |         |         |  |
|  | >= 12                | 2.94    | 2.95    |  |
|  | (damage<br>expected) |         |         |  |









**ICP VEGETATION** 2006 on-land grid square values



Centre for Ecology & Hydrology

CEH























# Flux functions and CLs: Crops

| J. |   |            |    |
|----|---|------------|----|
|    |   |            |    |
|    | Ż |            |    |
|    |   |            |    |
|    | Y | <u>9</u> , | 26 |

| Crop         | Crop Flux-effect<br>relation-<br>ship? | Critical Level? |         |  |
|--------------|----------------------------------------|-----------------|---------|--|
|              |                                        | Yield           | Quality |  |
| Wheat        | Yes                                    | Yes             | Yes     |  |
| Potato       | Yes                                    | Yes             |         |  |
| Beans        | Yes                                    |                 |         |  |
| Tomato       | Yes                                    | Yes             |         |  |
| Lettuce      | Yes                                    |                 |         |  |
| Oilseed rape | Yes                                    |                 |         |  |
| Broccoli     | Yes                                    |                 |         |  |







# **Forest trees**

| Species          | Flux-effect<br>relation-<br>ship? | New<br>Critical<br>level? |
|------------------|-----------------------------------|---------------------------|
| Norway<br>Spruce | Yes                               | Yes                       |
| Beech            | Yes                               | Yes                       |
| Birch            | Yes                               |                           |
| Sessile Oak      |                                   |                           |
| Holm Oak         | Yes                               | Yes?                      |
| Aleppo Pine      | Yes                               |                           |

ICP VEGETATION



Centre for

Ecology & Hydrology

 $\mathbf{CEI}$ 



□ From ozone exposure experiments conducted in Finland, France, Germany, Sweden and Switzerland





#### (Semi-)natural vegetation

□ Flux-effect relationships are complex due to complex community structure

