Global, developed with the GAINS model.
Emission sources:
Anthropogenic sources including international shipping (from version V5 onwards) and open burning of agricultural residue.
The emissions sets exclude some sources which can be acquired from a number of recognized studies/resources:
Pollutants:
All outputs in thousand tons of pollutant per year/grid; except carbon dioxide (CO2) for which global totals are provided
In addition, for the ECLIPSE V5 Reference scenario, particle number emissions have been estimated by size distribution and gridded:
Scenarios:
Depending on the version (see below), a number of scenarios are provided for which the key economic assumptions and energy use originate from IEA World Energy Outlook (IEA, 2011), the POLES model, or Energy Technology Perspectives (IEA, 2012) for the period 2010-2050, while statistical data for the period 1990-2010 came from IEA. For agriculture the FAO databases and long-term global projections were used (Alexandratos and Bruinsma, 2012). Additionally, for the European Union the data and results from the review of the National Emission Ceiling Directive work (Amann et al., 2012, 2015) were used.
Temporal distribution:
Total annual values (in five year intervals until 2030) as well as monthly profiles of emissions; the latter are provided as monthly shares for each grid.
Spatial distribution:
0.5o x 0.5o longitude-latitude; Global total and key sectoral totals. The following sector-layers are available: energy, industry, solvent use, transport, domestic combustion, agriculture, open burning of agricultural waste, waste treatment.
Basic grid patterns originate from Global Energy Assessment (GEA, 2012) but were enhanced and further developed by the authors for several sectors or specific activities, e.g., non-ferrous metals, livestock, mineral fertilizer use. Furthermore, for gas flaring the data on location of flares from NOAA/GGFR (World Bank) were used (Elvidge et al., 2011), QUANTIFY project results were utilised for international shipping, and for the Chinese power sector data from the MEIC system (Tsinghua University, Qiang Zhang personal communication) were provided.
Format:
NetCDF (Network Common Data Form)
Available Datasets:
Version | Release Date | Period covered | Scenarios |
---|---|---|---|
V3 | Nov 2013 | 2005, 2008, 2009, 2010 | No future scenarios were developed |
V4a | Jan 2014 | 2005, 2010, 2030, 2050 | - Reference (assuming current legislation for air pollution – CLE), - Maximum technically feasible reductions (MTFR) |
V5 | Apr 2014 | 1990-2030, 2040, 2050 | - Reference (assuming current legislation for air pollution - CLE), - No further control (NFC). - Short lived climate pollutants mitigation (SLCP) |
V5a | Jul 2015 | 1990-2030, 2040, 2050 | - Reference (assuming current legislation for air pollution - CLE), - Short lived climate pollutants mitigation (SLCP), - Maximum technically feasible reductions (MTFR), - Climate scenario (2 degrees, CLE) |
V6b | Aug 2019 | 1990-2030, 2040, 2050 | - Reference (assuming current legislation for air pollution - CLE), - Maximum technically feasible reductions (MTFR) |
How to reference?
A paper providing a comprehensive description of the PM emissions is available:
A further background paper describing the emission projections is in preparation for ACPD:
In addition, reference may be made to this webpage, the GAINS model (Amann et al., 2011), and the ECLIPSE project, (see text below, the Acknowledgements and Bibliography). As the background publication is submitted, the reference above will be updated.
Some elements of this global emission set have been documented already in published papers on
Recently the summary paper on the ECLIPSE project (using the V5 data set) has been published in ACP (Stohl et al., 2015) and it includes brief discussion of the scenarios.
Acknowledgments:
Bibliography:
Alexandratos, N. and Bruinsma, J. (2012) World agriculture towards 2030/2050, the 2012 revision (No. No. 12-03), ESA Working Paper. World Food and Agricultural Organization, Rome, Italy.
Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sander, R., Schöpp, W., Wagner, F., Winiwarter, W. (2011) Cost-effective control of air quality and greenhouse gases in Europe: modeling and policy applications. Environmental Modelling and Software 26, 1489–1501. doi:10.1016/j.envsoft.2011.07.012
Amann, M., J. Borken-Kleefeld, J. Cofala, C. Heyes, Z. Klimont, P. Rafaj, P. Purohit, W. Schoepp, and W. Winiwarter (2012) Future emissions of air pollutants in Europe – Current legislation baseline and the scope for further reductions. TSAP Report #1, International Institute for Applied Systems Analysis, Laxenburg, Austria.
Amann, M., Z. Klimont, and F. Wagner (2013) Regional and Global Emissions of Air Pollutants: Recent Trends and Future Scenarios. Annu. Rev. Environ. Resour. 38/1, 31–55.
Amann et al. (2015) Adjusted historic emission data, projections, and optimized emission reduction targets for 2030 – A comparison with COM data 2013. Part A: Results for EU-28. TSAP Report #16A, version 1.1. IIASA, Laxenburg, Austria, January 2015.
Buhaug, O. et al. (2009) Second IMO GHG study 2009, International Maritime Organization (IMO), London, UK.
Elvidge, C. D., K. E. Baugh, S. Anderson, T. Ghosh, and D. Ziskin (2011) Estimation of Gas Flaring Volumes Using NASA MODIS Fire Detection Products, NOAA National Geophysical Data Center, Boulder, US. [online] Available from: http://www.ngdc.noaa.gov/dmsp/interest/gas_flares.html
Eyring, V., I. S. A. Isaksen, T. Berntsen, W. J. Collins, J. J. Corbett, O. Endresen, R. G. Grainger, J. Moldanova, H. Schlager, and D. S. Stevenson (2010) Transport impacts on atmosphere and climate: Shipping, Atmos. Environ., 44, 4735–4771. doi:10.1016/j.atmosenv.2009.04.059.
IEA (2011) World Energy Outlook 2011, International Energy Agency, Paris, France.
IEA (2012) Energy Technology Perspectives. 2012 - Pathways to a Clean Energy System. OECD/IEA, International Energy Agency, Paris.
GEA (2012) Global Energy Assessment: Toward a Sustainable Future, Cambridge University Press, UK.
Guenther, A. B., X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, and X. Wang (2012) The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev. Discuss., 5, 1503–1560, doi:10.5194/gmdd-5-1503-2012.
Höglund-Isaksson, L. (2012), Global anthropogenic methane emissions 2005–2030: technical mitigation potentials and costs, Atmos. Chem. Phys., 12(19), 9079–9096, doi:10.5194/acp-12-9079-2012
Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M. G., Suttie, M., and van der Werf, G. R.(2012), Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 9, 527-554.
Klimont, Z., S. J. Smith, and J. Cofala (2013), The last decade of global anthropogenic sulfur dioxide: 2000-2011 emissions, Environ. Res. Let., 8(1), 014003, doi:10.1088/1748-9326/8/1/014003
Lee, D. S., D. W. Fahey, P. M. Forster, P. J. Newton, R. C. N. Wit, L. L. Lim, B. Owen, and R. Sausen (2009) Aviation and global climate change in the 21st century, Atmos. Environ., 43, 3520–3537.
Shindell D, Kuylenstierna JCI, Vignati E, Van Dingenen R, Amann M, Klimont Z, Kupiainen K, Hoeglund-Isaksson L (et al.) (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science, 335(6065):183-189.
Stohl, A., Z. Klimont, S. Eckhardt, K. Kupiainen, V.P. Shevchenko, V.M. Kopeikin, and A.N. Novigatsky (2013) Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions. Atmos. Chem. & Phys., 13, 8833-8855.
Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N., Berntsen, T. K., Boucher, O., Cherian, R., Collins, W., Daskalakis, N., Dusinska, M., Eckhardt, S., Fuglestvedt, J. S., Harju, M., Heyes, C., Hodnebrog, Ø., Hao, J., Im, U., Kanakidou, M., Klimont, Z., Kupiainen, K., Law, K. S., Lund, M. T., Maas, R., MacIntosh, C. R., Myhre, G., Myriokefalitakis, S., Olivié, D., Quaas, J., Quennehen, B., Raut, J.-C., Rumbold, S. T., Samset, B. H., Schulz, M., Seland, Ø., Shine, K. P., Skeie, R. B., Wang, S., Yttri, K. E., and Zhu, T. (2015) Evaluating the climate and air quality impacts of short-lived pollutants, Atmos. Chem. Phys. 15, 10529–10566, 2015. doi:10.5194/acp-15-10529-2015.
UNEP/WMO (2011) Integrated Assessment of Black Carbon and Troposheric Ozone, Nairobi, Kenya. [online] Available from: www.unep.org/dewa/Portals/67/pdf/BlackCarbon_report.pdf.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T. (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707-11735.
Van Vuuren, D. P. et al. (2011) The representative concentration pathways: an overview, Climatic Change, 109, 5–31, doi:10.1007/s10584-011-0148-z.
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. (2011) Geosci. Model Dev., 4, 625-641.
PUBLICATIONS
International Institute for Applied Systems Analysis (IIASA)
Schlossplatz 1, A-2361 Laxenburg, Austria
Phone: (+43 2236) 807 0 Fax:(+43 2236) 71 313